Основные правила хранения и использования библиотечных фондов, разработанные ИФЛА
International Federation of Library Associations and Institutions
Core Programme on Preservation and Conservation
and
Council on Library and Information Resources

IFLA
PRINCIPLES FOR THE CARE AND HANDLING OF LIBRARY MATERIAL

Compiled and edited by
Edward P. Adcock

with the assistance of
Marie-Thérèse Vartamoff and Virginie Kremp

International Preservation Issues
Number One
Основные правила хранения и использования библиотечных фондов, разработанные ИФЛА

Составитель и редактор
Эдвард П. Эдок

при участии
Мари-Терезы Варламоф и Вирджинии Кремп

Москва
"Рудомино"
2000
Оглавление

Предисловие 6
Введение 8
Планирование мер безопасности и готовности к аварийным ситуациям и стихийным бедствиям 13
Режим хранения 22
Традиционные библиотечные фонды 37
Фото- и кинодокументы 49
Аудиовизуальные средства 56
Изменение носителя 62
Приложение I. Куда обратиться за консультацией 70
Приложение II. Стандарты 72
Предисловие

История вопроса

Международная федерация библиотечных ассоциаций и учреждений — ИФЛА, в интересах мирового библиотечного сообщества, возложила на себя ответственность за принятие и распространение своих средств и по своим основным профессиональным принципам организации мер по сохранности и консервации.

Руководство "Принципы сохранности и консервации библиотечных материалов" было впервые опубликовано в IFLA journal, вып. 5, 1979. Впоследствии Ж.М.Дюро (J.M.Dureau) и Д.У.Д. Клемент (D.W.G.Clements) по поручению секции ИФЛА по консервации переработали и расширили руководство, и оно было опубликовано в 1986 г. в серии IFLA Professional Reports, 8.

В 1994 г. в рамках Основной программы ИФЛА "Сохранность и консервация" (IFLA-ПАК) был проведен опрос специалистов по сохранности, представлявших различные учреждения и организации библиотекарей и архивистов: Международный совет архивов (МСА), ИФЛА-ПАК, секцию ИФЛА по консервации, — что позволило получить предложения и замечания для пересмотра документа 1986 г.

За минувшие 12 лет вышли статьи и книги по самым разнообразным темам, имеющим отношение к сохранности и консервации библиотечных фондов. Кроме того, за это время сохранность и консервация утвердились как самостоятельная специальность в библиотечной профессии. И тем не менее во всем мире есть немало библиотек, которые нуждаются в методической помощи, и поэтому, приступая к пересмотру "Принципов сохранности и консервации библиотечных материалов", изданных в 1986 г., руководство ИФЛА-ПАК решило подготовить четкий и сжатый документ и сконцентрироваться на общих требованиях к хранению документов, которые библиотеки могли бы принять за основу своих программ по обеспечению сохранности фондов.

Международный центр ИФЛА-ПАК выражает признательность Совету по библиотечным и информационным ресурсам (США), в частности Джинне Маркум (Deanna Marcum), Хансу Руитманну (Hans Ruitmann), Максине Ситц (Maxine Sitts) и Кэттин Смит (Kathlin Smith), за их поддержку и советы и за оказанное доверие.

Цели

Настоящий документ представляет собой посессие вводного характера по обеспечению сохранности библиотечных фондов и уходу за ними и предназначается как для лиц, не обладающих специальными знаниями, так и для учреждений, не специализирующихся в области сохранности. Он не содержит перечней подробно описываемых методов и приемов, а дает лишь основные сведения, которые могут побудить библиотеки со всей ответственностью отнестись к обеспечению надлежащего ухода за своими фондами. Факторы, представляющие угрозу для библиотечных материалов, часто хорошо известны, но не всегда осознаются последствия итогирования этих факторов. Настоящие "Правила ИФЛА" призваны помочь тем, кто, по долгу службы, обязан предупредить такие последствия и соизмерить их с научными работниками и специалистами-технологами и разработать политику, гарантирующую сохранность их фондов в будущем.

Основное назначение данной публикации заключается в следующем:

• показать, насколько непрочны библиотечные материалы;
• распространить знание о долговечности и прочности библиотечных материалов;
• содействовать созданию надлежащих условий хранения и использования;
• помочь библиотечному персоналу в поисках решений проблем сохранности;
• стимулировать установление четкого взаимодействия между руководством библиотек, отделами эксплуатации здания и специалистами по сохранности и консервации для совместной работы по обеспечению сохранности библиотечных фондов.
От редактора

Необходимо иметь в виду, что данное пособие предполагает обязательное использование и других пособий. Оно составлено на основе многих источников и может служить лишь введением к целому ряду тем, связанных с хранением и использованием библиотечных фондов. Поэтому читателям рекомендуется ознакомиться с указанными ниже книгами, которые содержат обширные библиографические списки по всем темам, затронутым в данном пособии.

Определение термина "сохранность" часто подразумевает все управленческие, административные, финансовые и кадровые факторы, необходимые для гарантии сохранности библиотечных фондов в надлежащем состоянии. Однако в данном документе сохранность означает специальные меры по обеспечению необходимого уровня безопасности, контроль режима хранения, ухода и использования, т.е. то, что поможет задержать процесс химического разрушения и предохранить библиотечные материалы от механических повреждений.

Тема консервации сознательно не затрагивается. Если многие методы обеспечения сохранности могут быть применены персоналом, не имеющим специальной подготовки, то консервацией должны заниматься только эксперты, имеющие полномочия и соответствующие полномочиями и материалами. Кроме того, процессы консервации — чрезвычайно трудоемкие и дорогостоящие, и во всем мире далеко не всем библиотекам это доступно. Следовательно, данное пособие предлагает только те меры, которые могут применить многие библиотеки, с тем чтобы предотвратить и замедлить порчу и износ фондов.
Введение

Что представляет главную опасность для библиотечных фондов

- Свойства материальной основы документа.
- Стикливые бедствия и аварии.
- Условия и режим хранения.
- Обращение и использование.

Традиционные библиотечные фонды состоят из документов, при производстве которых использовались разнообразные органические вещества: бумага, ткань, натуральная кожа, различные виды клея. Именно эти органические вещества подвержены постепенному и естественному старению. И если можно принять соответствующие меры, чтобы замедлить процесс старения посредством бережного использования и создания благоприятных условий хранения, то совсем остановить его невозможно.

Физическая и химическая стабильность библиотечных материалов зависит от качества и способа обработки сырья, используемого при их изготовлении, а также от дизайна и конструкции конечного продукта.

За последние столетия методы массового производства привели к снижению качества поступающих в библиотеки материалов. Бумага, производившаяся после 1850 г., содержит высокий процент кислоты, она становится хрупкой, ломкой, и со временем разрушается. Переплетные процессы были упрощены в результате механизации, и в многих книгах текстовые блоки скрепляются сейчас только при помощи kleя. В действительности, все книги, особенно в кожаных переплетах, подвержены опасности повреждения в гораздо большей степени, чем принято считать.

При хранении современных носителей, таких как микроформы, оптические и магнитные диски, цифровые форматы, фотографии, аудиовизуальные средства, возникают серьезные проблемы. Они требуют особого режима хранения и бережного обращения во избежание их преждевременного износа.

Обычно бывает трудно признать тот факт, что эксплуатационный цикл значительного объема библиотечных фондов уже заканчивается и что на оставшиеся несколько лет его можно продлить лишь посредством ограниченного и бережного использования и правильного хранения.

Для чего сохранять

- Тип библиотеки и то, как она используется, определяют политику обеспечения сохранности ее фондов. Требования к сохранности в публичных библиотеках, выдающих все книги по абонементу, безусловно отличаются от нужд крупной национальной библиотеки. Однако и та и другая обязаны пополнять свои фонды и обеспечивать их доступность в течение нескольких лет или постоянно.
- В силу экономических соображений библиотеки не могут допустить преждевременного износа фондов. Замена отдельных документов, даже если это возможно, обходится недешево, экономически обеспечить их сохранность.
- Нельзя с уверенностью предсказать, что будет представлять интерес для ученых и исследователей в будущем. Обеспечить сохранность того, чем мы располагаем сегодня, — лучший способ удовлетворить запросы потенциальных пользователей будущего.
- Ответственный и компетентный персонал должен выполнять свои обязанности по уходу за вверенными им библиотечными фондами.

Кто несет ответственность

За сохранность отвечают все и каждый. В то время как эксперты по сохранности и консервации могут давать советы и консультировать и выполнять конкретные действия, долгом каждого члена коллектива библиотеки, начиная прежде всего с директора, является поддержание хорошего состояния ее фондов. Меры по сохранности необходимо
Введение

разработать, утвердить, довести до общего сведения, и их выполнение должно быть обязательным на всех уровнях — от директора до технического персонала.

Те, кто несет ответственность за управление библиотекой, за содержание здания библиотеки в надлежащем состоянии, должны работать в самом тесном контакте с теми, кто отвечает за соблюдение установленных требований к хранению библиотечных фондов. Например, если выделены деньги на замену устаревшей системы освещения здания, этой возможностью следует воспользоваться и для того, чтобы новая система была не только более экономичной, но и соответствовала нормам освещенности в помещениях для хранения документов. Когда устанавливается новая или частично заменяется действующая водопроводная система, необходимо принять все меры к тому, чтобы снизить, а не повысить риск протечек при замене труб во всех помещениях, где хранятся документы. В такой ситуации главное — совместные действия.

Требования к сохранности важно учитывать и в свете социальных и политических факторов, влияющих на работу учреждения. Министерства библиотек, политика комплектования и имеющиеся ресурсы — все это также нужно принимать в расчет. Следовательно, политика обеспечения сохранности должна согласовываться с различными отделами в силу ряда причин, а именно:

- Отдел комплектования и хранения фондов должен быть готов к закупке и размещению дополнительных экземпляров часто используемых материалов, например справочных изданий, в тех случаях, когда их ремонт обходится дороже, чем замена. Необходимо также подсчитать, не будет ли их замена копиями на микрокопиях или в электронной форме (включая стоимость оборудования для чтения) более экономичной, чем приобретение экземпляров часто спрашиваемых документов на бумажных носителях.
- Политика сохранности должна быть согласована с отделом каталогизации и учета и с сектором обслуживания, с тем чтобы ориентировать читателей на пользование копиями, а не оригиналы.
- Соответствующие отделы должны иметь план оптимального размещения новых поступлений.
- Персонал читательских залов следует регулярно информировать об всех ограничениях на использование оригиналов и на фотоосциллоирование.
- Следует выдавать средства на обучение персонала применению мер безопасности — как в отношении себя, так и в отношении библиотечных материалов, — правилам обращения с материалами и методике обучения пользователей.
- При организации выставок — в библиотеке или за ее пределами — должна быть обеспечена безопасность экспонируемых ценных экземпляров. Библиотекари и специалисты по консервации должны совместно дать заключение о пригодности экземпляра для экспонирования. Необходимо создать условия и режимы, соответствующие требованиям безопасности и сохранности.
- Специалисты по сохранности и работники хранительства, независимо от их квалификации и опыта, должны не только наблюдать определенными техническими навыками и научными познаниями, но и знать историю развития фонда, свойства различных носителей и даже содержание документов, с тем чтобы глубже осознать проблемы сохранности. Профессиональным библиотекарям, библиотечному персоналу всех уровней, студентам библиотечных учебных заведений — всем необходимо знать, сколько важное место занимает сохранность в работе библиотеки.

С чего начинать

Процесс формирования политики сохранности начинается с посылки о том, какие материалы и в каком объеме библиотека приобретает и хранит. Не может существовать каких-либо общих рекомендаций по отбору документов для комплектования и сохранения с установкой на будущее. Это зависит от нужд конкретной библиотеки и ее политики. Тем не менее национальным и региональным библиотекам следует координировать деятельность и распределить обязанности по обеспечению сохранности тех или
иных массивов документов.

Чтобы справиться с выполнением своих обязательств по обеспечению надлежащего ухода за фондами, каждой библиотеке необходимо объективно оценить физическое состояние зданий, фондов и потребности в сохранности. Кроме того, располагая ограниченными финансовыми и техническими средствами, важно принять конкретные и реалистические решения. Такую оценку можно провести своими силами или привлечь независимых консультантов, уже зарекомендовавших себя. Оба подхода имеют свои преимущества и недостатки. Услуги консультантов обходятся недешево, при этом требуется участие сотрудников, что отнимает время. Однако заключение должно быть беспристрастным и помочь выявить действительное положение. Децентрализация оценки своими силами, но она может оказаться не вполне объективной. К сожалению, рекомендации издано обычно принимаются к сведению с большей готовностью, чем те, которые подготовлены членами коллектива.

Подобное мероприятие должно осуществляться усилиями всех отделов под контролем руководства библиотеки. Заключение, не имеющее подпись авторитетного должностного лица, часто не принимается во внимание. Заключительный отчет имеет решающее значение для успеха любого анализа потребностей. В нем должны быть четко указаны все факторы, представляющие опасность для сохранности фондов, и данные реалистичные и конкретные предложения.

Как начинать

Важно поставить ясно сформулированные цели, прежде чем приступить к обследованию состояния здания и фондов. Необходимые данные о функциях, рабочих процессах и методах могут быть найдены в соответствующих документах, но наиболее надежным источником сведений будут интеръе библиотечного персонала на всех уровнях, наблюдение за тем, как обращаются с материалами персонал и пользователи, выявление опасных "мест" путем осмотра здания и фонда.

Прежде всего необходимо выявить факторы, представляющие непосредственную угрозу для фонда в целом или для отдельных собраний. Эти факторы могут быть различными в разных библиотеках; в одном случае может понадобиться замена систем пожарной сигнализации и системы дымоудаления, в другом — комплексная программа энтомологического надзора за документами или перевод ценной коллекции фотографий в помещение с более стабильной температурно-влажностным режимом.

Регулярные обследования служат основой для разработки программы обеспечения сохранности. Они должны быть всеобъемлющими, но не следует чрезмерно увлекаться деталями. Часто в результате обследования накапливается так много информации, что впоследствии бывает очень трудно упорядочить и проанализировать все собраные данные. Краткие вопросы и ответы — ключ к успеху обследования. Ниже излагаются общие планы четырех обследований, которые могут послужить основой при проведении оценки. Последующие главы содержат ряд идей о том, на что направить основное внимание, составляя план обследования.

Задание: выявить факторы, которые могут стать причиной аварии или нарушения физико-химического и биологического режима хранения и которые обусловлены местоположением учреждения; описать историю здания и как оно используется; проверить состояние стен здания — как снаружи, так и изнутри.

Планировка и стихийным бедствиям и авариям: описать аварийные ситуации, как природные, так и причиненные человеком, и их потенциальную опасность для зданий и фондов; оценить существующие меры предупреждения аварий; изучить степень готовности к авариям и бедствиям и меры регулирования.

Условия хранения: составить отчет о том, какие принимаются меры для поддержания нормативных условий хранения; указать достоинства и недостатки конкретных мер и ответственных за их выполнение.

Фонд: оценить состояние фонда и выявить потенциальные проблемы. Сведения о типах и количестве документов дадут представление о составе фонда (например: 300
фотографий, 2 000 книг или 10 м коробок с рукописями) и его хронологических рамках (например: 10 тыс. книг, изданых до 1850 г.; 20 тыс. книг, изданых в 1850—1900 гг.; 500 тыс. книг, изданых после 1900 г. и до настоящего времени). Необходимо также включить следующие параметры:
* в каком состоянии находится фонд в целом;
* какие части фонда или коллекции находятся в особенно плохом состоянии;
* какие части фонда или коллекции являются наиболее ценными или важными;
* какие части фонда или коллекции хранятся в самых плохих условиях;
* в каком направлении вероятнее всего будет вестись формирование фонда;
* наличие помещений и возможность выделить дополнительные помещения в случае расширения фонда.

Располагая данными об интенсивности использования различных документов, можно определить, что требуется для обеспечения сохранности определенной части фонда. Например, журналы по краеведению, пользующиеся повышенным спросом и поэтому принаследующие в крайне плохое состояние, необходимо микрофильмировать в первую очередь, отложив микрофильмирование других журналов в той же степени износа, но не так часто спрашиваемых.

Другие аспекты, рассматривающиеся в последующих главах, также должны быть учтены, например: безопасность фондов; как хранятся документы и как они используются; состояние помещений для хранения документов; правила пользования документами в частных залах; уровень подготовки и квалификации персонала.

Что сохранять

Когда анализ потребностей в сохранности завершен, следует определить их первоочередность. Принимая во внимание ограниченные ресурсы и потенциальный объем работ, необходимо выработать избирательный подход при принятии решений о том, что именно предстоит сделать, чтобы:
* обеспечить безопасность здания;
* улучшить контроль за окружающей средой;
* улучшить условия хранения и использования фондов.

Такой подход должен быть отражен в политике библиотеки, если ставится задача надлежащим образом выполнить свои обязательства перед пользователями будущего. Важно понять, что такая избирательность отнюдь не исключает всеобъемлющие меры по обеспечению сохранности всего фонда в целом. Возможно, все документы не нуждаются в специальном уходе и хранении при специальном режиме, но весь фонд нуждается в защите от аварий и стихийных бедствий, от краж и порчи, от биологического повреждения и небрежного использования.

Обычно, отбирают документы, например для переформатирования или хранения в специальных контейнерах, руководствуясь захватным смыслом. Если поместить в контейнеры малопрошенные документы в хорошем состоянии и оставить без внимания те, которые разрушаются и часто используются, то едва ли такой подход будет продиктован наиболее строгим смыслом; то же самое можно сказать о переформатировании документов, уже перенесенных на этот носитель в другом учреждении.

Финансовые аспекты

Почти всегда объем информации, содержащейся в библиотечных фондах, намного превышает возможности учреждения успешно выполнить свою задачу по предоставлению информации. Нельзя сохранить все, и так было всегда. Обязательство по обеспечению длительного или постоянного хранения подразумевает значительные финансовые затраты на размещение, поддержание специального режима хранения и, в случае необходимости, переформатирование. Отсюда следует, что прежде всего нужно решить, что собирать и хранить.

Долг каждой библиотеки — обеспечить хорошее состояние фонда в интересах пользователей сегодня и в будущем. К сожалению, реальность такова, что надзор за состо-

11
Введение

Янием фонда и его сохранность обходятся дорого. Слишком долго библиотеки тратили значительную часть своего бюджета на комплектование. Во многих библиотеках выделяется недостаточно средств — или не выделяется вообще — на нужды сохранности. Но меры по предупреждению порчи и износа библиотечных фондов часто всегда обходятся дешевле, чем их ремонт и замена.

Наи одна библиотека не имеет права игнорировать меры готовности к случайным пожарам, наводнениям, хищениям, биоповреждениям, поскольку меры по спасению и восстановлению документов, постраливших в результате этих бедствий, требуют больших финансовых затрат и людских ресурсов. Последствия ущерба сказываются во всем. Но крупные аварии часто вызваны обстоятельствами, которые могли быть своевременно и без особых затрат предупреждены. Предупредительные меры — не только лучший подход, но почти всегда они обходятся значительно дешевле, чем восстановительные.

Уход за библиотечными фондами не обязательно подразумевает крупные вложения за счет бюджета библиотеки. Существует много рациональных и экономически оправданных решений проблем обеспечения сохранности. Однако руководство библиотеки должно осознавать, что сохранность и поддержание хорошего физического состояния фонда так же важны, как и его пополнение, а следовательно, на это должны выделяться соответствующие средства.

Сотрудничество

Очень важно, чтобы библиотекари понимали, что от них зависит сохранность фондов, но это недостаточно. Важно довести это до сведения широких кругов пользователей и до сведения тех, кто может помочь финансировать программы обеспечения сохранности. Правительство должно принимать активное участие в деятельности по сохранению национального наследия. Национальные центры сохранности, получающие финансовую поддержку от государства или от частных организаций, крайне необходимы, если ставить вопрос о вызывающем письменного наследия страны, на каких бы носителях оно ни хранилось. Эти учреждения должны иметь возможность содействовать разработке и реализации программ сохранности во всех библиотеках и архивах. При этом недо статочно снабжать литературой о мерах готовности к стихийным бедствиям и авариям, оказывать услуги по копированию или консервации. Необходимо также организовывать обучение и стажировки для персонала.

Кроме того, национальные центры сохранности могут принять на себя функции по координации программ сохранности на национальном уровне. У них будет возможность отставать позицию библиотек по таким вопросам, как обязательное использование долговечной бумаги в издательском деле. Организация кампаний по пропаганде правильного и бережного использования библиотечных материалов, например посредством плакатов, выведенных в школах и библиотеках, — еще один вид деятельности, который мог бы вести национальные центры сохранности.

Для выживания национального наследия чрезвычайно важно координация программ сохранности — национальных, региональных, ведомственных и осуществляемых отдельными библиотеками. Было бы неразумно полагать, что библиотеки смогут своими силами успешно решать технические и финансовые проблемы сохранности, общие для всей страны. Например, в 1996 г. ИФЛА и МАС учредили Советскую комиссию по сохранности для Африки (Joint IFLA — ICA Committee for Preservation in Africa) в целях привлечения внимания к вопросам сохранности и координации усилий в данном регионе.

Библиотеки должны сотрудничать не только с архивами, но и с музеями и художественными галереями. Можно добиться значительной экономии средств и избежать дублирования усилий, если эти учреждения будут обмениваться опытом и совместно решать такие проблемы, как контроль условий и режима хранения, оценка состояния зданий и фондов, разработка планов готовности к стихийным бедствиям и проведения восстановительных работ.
Планирование мер безопасности и готовности к аварийным ситуациям и стихийным бедствиям

Меры безопасности 14
- Охрана прилегающей территории и здания 14
- Предупреждение преступного и антиобщественного поведения 14
- Меры безопасности в читальных залах 14
- Обеспечение безопасности библиотечных материалов 15
- Брошюра о действиях в аварийных ситуациях 15

Планирование мер готовности к стихийным бедствиям и аварийным ситуациям 15
- Оценка степени риска 16
 - Выявление внешних источников опасности 16
 - Выявление внутренних источников опасности 17
 - Оценка существующих предупредительных мер 17

- Предупредительные меры 17
 - Системы пожарной сигнализации 18
 - Ручные средства тушения пожара 18
 - Автоматические системы тушения пожара 18
 - Поддержание установленного режима 19

- Готовность 19
 - Немедленное реагирование 20
 - Просушка намокших документов 20
 - Воздушная сушка 21
 - Восстановительные работы 21
Меры безопасности

Разработка, координация и выполнение политики и мер безопасности в библиотеке входят в обязанности руководства библиотеки. При планировании мероприятий по обеспечению безопасности необходимо проконсультироваться с другими библиотеками, с представителями правоохранительных органов и персоналом.

Охрана прилегающей территории и здания

- Прилегающая к библиотеке территория должна содержаться в порядке.
- Здание должно быть обследовано изнане, с тем чтобы установить возможность проникновения преступников. Необходимо предусмотреть установление систем сигнализации и системы наружного наблюдения с помощью телекамер. Все участки должны быть хорошо освещены.
- Двери и окна должны быть тщательно укреплены, т.е. установлены надежные замки, специальное стекло, защитное пленочное покрытие.
- Внутри здания должен поддерживаться порядок. Это создает впечатление постоянного ухода и наблюдения и может отпугнуть потенциального преступника.
- Все входы и выходы, а также переходы не должны, по возможности, сообщаться и открываться доступ во все помещения и должны всегда быть под наблюдением.
- Все служебные помещения в отсутствие персонала должны быть закрыты на замки.
- Дороговлящее оборудование должно быть приковано цепью или привязано и иметь специальные защитные пометки.
- Все лица, выполняющие подрядную работу, должны расписываться о своем приходе и уходе и всегда иметь при себе пропуска.
- Персоналу необходимо постоянно напоминать о бдительности.
- Во всех помещениях для хранения документов должны быть обеспечены меры безопасности и разработаны четкие инструкции о доступе конкретных лиц в конкретные помещения.
- Более строгие меры безопасности, например использование специальных камер, должны быть приняты для обеспечения сохранности особо ценных документов.

Предупреждение преступного и антиобщественного поведения

К преступному и антиобщественному поведению можно отнести и действия хулигана, и предумышленной кражи. Следующие условия способствуют предупреждению случаев преступного и антиобщественного поведения:
- поддержание в библиотеке спокойной обстановки и порядка;
- создание в библиотеке таких условий, которые настоящий читатель оценивает как благоприятные и эффективные, но в которых злоумышленник чувствует себя неуверенным;
- наличие броских объявлений с четкими определениями случаев недопустимого поведения;
- обучение персонала приемам обращения с опасными или агрессивными пользователями либо с подозреваемыми в краже книг.

Меры безопасности в читальных залах

Необходимо обращать внимание на следующее:
- как отдельные экземпляры выдаются и как проверяются при возврате;
Планирование мер безопасности и готовности к аварийным ситуациям и стихийным бедствиям

- как ведется наблюдение за пользователями читальных залов;
- правильно ли установлены средства защиты;
- вносятся ли в читальную зону сумки и пакеты и проверяются ли они на выходе.

Обеспечение безопасности библиотечных материалов

На всех библиотечных материалах должны быть проставлены штампы, четко указывающие на их принадлежность конкретной библиотеке. Штамповая краска должна быть быстросохнущей, незаметной и водостойкой. Если используются какие-либо виды защитных ярлыков, их следует регулярно осматривать.

Брошюра о действиях в аварийных ситуациях

Важно иметь брошюру о действиях в аварийных ситуациях, с которой должны ознакомиться все сотрудники библиотеки. В ней следует перечислить только первоочередные меры, указать ответственных лиц и их координаты, с тем чтобы к ним можно было обратиться за помощью в следующих ситуациях:
- несчастный случай с работником библиотеки или посетителем;
- вандализм, кража, угроза физического насилия;
- отключение электроэнергии, остановка лифта, пропажа контрольных ключей;
- чрезвычайные ситуации, влекущие угрозу для людей, фондов, здания (например, сообщение о заложенной бомбе);
- предупреждение об угрозе, эвакуации и наводнении.

Планирование мер готовности к стихийным бедствиям и аварийным ситуациям

В любой библиотеке, независимо от размеров здания или объема фондов, необходимо принять все возможные меры готовности к стихийным бедствиям или по предупреждению аварийных ситуаций. Не менее важны и меры по ликвидации последствий стихийного бедствия или аварии.

<table>
<thead>
<tr>
<th>Стихийные бедствия</th>
<th>Аварии</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ураганы</td>
<td>Военные действия и террористические акты</td>
</tr>
<tr>
<td>Наводнения</td>
<td>Пожары</td>
</tr>
<tr>
<td>Землетрясения</td>
<td>Затопление водой (в случае лопнувших труб или протечки кровли)</td>
</tr>
<tr>
<td>Извержения вулканов</td>
<td>Взрывы</td>
</tr>
<tr>
<td>Песчаные бури</td>
<td></td>
</tr>
</tbody>
</table>

Убедитесь, что план изложен четко и понятно для всех, кто будет принимать участие в назначенных мероприятиях. Регулярно пересматривайте план и обеспечьте наличие экземпляра плана как в здании, так и вне его.

Уже опубликовано много пособий в помощь учреждениям, организующим мероприятия по предотвращению аварийных ситуаций, спасательных и восстановительных работ. Поэтому здесь будут перечислены лишь самые главные пункты. В каждой библиотеке должен обязательно иметься письменный план, в котором эти ключевые элементы будут разработаны во всех деталях.

При планировании мер готовности к стихийным бедствиям и авариям (как и мер
Планирование мер безопасности и готовности к аварийным ситуациям и стихийным бедствиям

по обеспечению сохранности в целом можно применить "фазированный" подход, т.е. возможно, в качестве первого шага, начать с нескольких участков, особенно когда учреждение концентрирует внимание на тех вопросах, которые требуют неотложного решения. На последующем этапе разработчики плана могут более углубленно раскрыть и другие проблемы, поскольку у них уже будет накоплен некоторый опыт, будет больше времени на расширение плана и на согласование всех предложений и идей о том, как учреждение должно организовать мероприятия по подготовке к аварийным ситуациям.

Планирование мер готовности обычно предполагает пять фаз:

* Оценка степени риска: выявление источников опасности для здания и фондов.
* Предупредительные меры: принятие мер, которые предотвратят или уменьшат опасность.
* Готовность: разработка письменного плана подготовки, реагирования и восстановления.
* Реагирование: действия и приемы, которые необходимо выполнить в случае катастрофы.
* Восстановительные работы: ликвидация последствий при аварии или катастрофе или приведение поврежденных документов в стабильное и пригодное для использования состояние.

Оценка степени риска

На этом этапе нужно выявить внешние и внутренние источники опасности, которые могут оказаться критическими для состояния фондов, и оценить все слабые места действующей программы по обеспечению безопасности и ликвидации их последствий. Консультации с работниками пожарной охраны помогут вскрыть потенциальные факторы рисков, которые могут обратиться.

Выявление внешних источников опасности

* Описать район, в котором находится здание (жилой, промышленный, торговый центр, сельский, зона отдыха).
* Указать, имеются ли крупные промышленные или естественные источники опасности вблизи от здания, где располагаются здания (авиапорты, железнодорожные или шоссейные дороги, естественные водоемы, такие как океан, озера, реки, прптивление, озеленение, другие здания).
* Указать, что находится в непосредственной близости от здания или на прилегающей территории (отражение дороги, естественные препятствия, реки, озера, прибрежная полоса, темные углы и тупики, нависающие ступеньки, участки, где можно спрятаться).
* Выявить степень защиты окружающей территории (регулярное патрулирование, достаточное освещение, охрана ворот и входов, отдельные входы для сотрудников и посетителей/пользователей).
* Установить степень загрязнения здания, лен, выхлопные и промышленные газы, причиной которой может быть транспорт, промышленное предприятие или неблагоприятная окружающая среда.
* Установить степень защите здания от пожара и наводнения и возможную их причину: естественную (близость леса, реки) или по вине человека (заводы по переулучке нефти).
Планирование мер безопасности и готовности к аварийным ситуациям и стихийным бедствиям

- Упомянутые происшествия или аварии, случившиеся за последние пять лет (угрозы взрыва, общественные беспорядки, бунты, военные действия, стихийные бедствия или аварии — наводнение, землетрясение, пожар, пыльные бури, вандализм).

Выявление внутренних источников опасности
- Материалы, использовавшиеся при строительстве здания.
- Огнеопасность строительных и отделочных материалов.
- Наличие огнеопасных стен, отделяющих одни части здания от других, и огнеопасных дверей.
- Удаленность помещений для хранения документов от водопроводной системы, от электрокабеля, от машин и механизмов.
- Вероятность загорания помещений для хранения документов.
- Разрешается ли курение в какой-либо зоне.
- Хранятся ли легко воспламеняющиеся материалы, помимо книг (например, химические реактивы в лабораториях), вблизи от помещения хранения.

Оценка существующих предупредительных мер
- Наличие в здании системы оповещения о задымлении, пожаре или затоплении.
- Наличие автоматической системы тушения пожара.
- Какие виды ручных средств тушения пожара имеются в данной части здания (огнетушители, работающие на воде, пено, двукиси углерода; пожарные шланги и т.п.).
- Насколько регулярно проводятся проверка систем сигнализации и/или тушения пожара.
- Имеется ли в здании пожарный шланг.
- Принимаются ли специальные меры предосторожности в тех случаях, когда ведутся потенциально опасные работы, например замена электрокабеля, ремонт или реконструкция помещений и здания в целом.
- Подсоединено ли система охранных и пожарной сигнализации здания (если таковая имеется) к местным отделам внутренних дел и пожарной охраны.
- Имеется ли в библиотеке план, в письменной форме, действий и мер готовности на случай стихийных бедствий и аварий.
- Он должен содержать следующие элементы: описание действий и чрезвычайных мер; план реагирования; перечень спасательных средств и запасного оборудования; первоочередность восстановительных работ; фамилии специалистов по консервации; перечень аварийного оборудования, хранящегося в других помещениях; список добровольцев из числа сотрудников; прочее.
- Подготовка персонала к действиям в аварийных ситуациях (ответственный за обучение; регулярность учебных мероприятий; эвакуация по учебной тревоге).
- Проводится ли ежедневное дублирование машинночитаемых данных.
- Обеспечивается ли дублирование и хранение в резервном помещении традиционных каталогов и данных о регистрации новых поступлений.
- Обеспечивается ли дублирование и хранение в другом помещении электронных каталогов и записей.

Предупредительные меры

После выявления степени риска необходимо принять незамедлительные меры по обеспечению безопасности здания и фондов, при этом следует обратиться за консульт-
Планирование мер безопасности и готовности к аварийным ситуациям и стихийным бедствиям

тачей в соответствующие службы по чрезвычайным ситуациям: в службу пожарной охраны, отдел внутренних дел, больницу.

Системы пожарной сигнализации

Все части здания должны быть оборудованы системами обнаружения огня и дыма, которые одновременно приводят в действие системы сигнализации и в здании, и в местном отделе пожарной охраны. Система обнаружения дыма может заблаговременно предупредить о возникновении пожара, что позволит справляться с огнем вручную до того, как сработает автоматическая спринклерная система тушения пожара.

Посты ручной пожарной сигнализации, которыми могут воспользоваться люди, находящиеся в различных частях здания, должны быть установлены во всех зданиях.

Ручные средства тушения пожара

Если в здании нет автоматической системы тушения пожара, то в распоряжении должно находиться следующее оборудование:

- Пожарные шланги (в скатах или на подставках), расположенные с таким расчетом, чтобы любой участок в здании находился в пределах 6 м от наконечника полностью развернутого шланга.
- Система пожарных гидрантов или магистральных выводов на всех этажах, высота которых превышает 30 м или в которых площадь одного этажа превышает 1000 кв. м.
- Пожарные гидранты или магистральные выводы должны быть расположены так, чтобы обеспечить высокое давление в брандспойтах пожарников, работающих с ними.
- Необходимо всегда иметь достаточное количество портативных огнетушителей, даже при наличии автоматической системы тушения пожара. Они должны быть различных типов, т.е. работать на двуокиси углерода, воде, пены — в зависимости от причины пожара (например, неисправная электропроводка или химические вещества), и размещены в соответствии с планом.

Автоматические системы тушения пожара

Прежде всего следует обстоятельно изучить все преимущества автоматических систем тушения пожара.

- Система на двуокиси углерода пригодна для использования в небольших помещениях, тогда как газы могут в них сохраняться и вызвать опасность. При этом двуокись углерода не вызывает опасности сгораемых веществ.
- Системы на газе Halon в настоящее время не используются, так как они наносят вред окружающей среде, в частности способствуют разрушению оксидного озонового слоя.
- Спринклерные системы "мокрых труб" являются надежным и безопасным способом пожаротушения и просты в обращении. Вопросы распространению тушения, к которым относятся срабатывания системы. В среднем один спринклер в трубе длиной 90 м воды в минуту, в то время как обычный брандспойт выбрасывает 540—1125 л в минуту. Следует помнить, что последствия использования воды (в отличие от химических веществ) для человека и для окружающей среды хорошо известны, тогда как воздействие различных химических веществ мало изучено. Более того, необходимо установить спринклеры в соответствии с планом.

Если планируется установка систем пожаротушения с использованием воды, например спринклерных, необходимо предусмотреть возможность быстрого отключения воды.
Планирование мер безопасности и готовности к аварийным ситуациям и стихийным бедствиям

труб, с той лишь разницей, что трубы в охраняемой зоне содержат воздуха под давлением. Когда приводится в действие спринклер, открывается клапан и воздух начинает поступать в трубы. Это уменьшает опасность протечки в помещении хранения.

• На стадии разработки находится система, вырабатываемая ограниченное количество воды при очень высоком давлении в виде водяной пыли, что обеспечивает чрезвычайно эффективное охлаждение и быстрое подавление огня при значительно меньшем расходе воды. Испытания показали, что при использовании этой системы удается избежать затопления водой, что всегда происходит при тушении пожара традиционными способами. Есть и другие преимущества: низкая стоимость установки, минимальный ущерб интерьеру, экологическая безопасность.

Поддержание установленного режима

Системы сигнализации и тушения пожара, состояние здания, системы водоснабжения, канализации, электроснабжения и подачи газа, осветительная арматура и т. п. должны содержаться в надлежащем состоянии и регулярно проверяться. Все отчеты должны храниться, а каждым месяцем должен быть составлен протокол.

Готовность

Необходимо подготовить, регулярно пересматривать и обновлять следующие документы:

• Подписные планы здания, на которых должны быть указаны и обозначены все помещения для хранения библиотечных материалов, оконные и дверные проемы, входы и выходы; размещение ответственных лиц; пожарная сигнализация; спринклеры; детекторы огня; дымы; трубы водопровода, подачи газа и централизованного отопления; пульты управления лифтами, системы пожарной и отключения электро- и водоснабжения.

• Составленные различными отделами перечни объектов, подлежащих эвакуации в первую очередь. Пожарные могут разрешить спасателям войти в здание лишь на короткое время, поэтому важно знать, какие именно предметы необходимо вынести и где они находятся.

• Отбор и обучение людей для бригады быстрого реагирования, включая добровольцев из числа персонала, проживающих недалеко от библиотеки. Бригада должна иметь некоторую практику по эвакуации материальных ценностей и уверенно применять методы спасательных работ. Важно проводить для них учебные занятия в условиях, приближенных к аварийным ситуациям, для отработки методов и приемов.

• Детальные и последовательные инструкции по всем фазам спасательных работ в различных аварийных ситуациях (например, течь в кровле или водопроводе, затопление и пожар) и по эвакуации разнообразных видов документов в фонде библиотеки, например книг, журналов, рукописей, ламированных и неламированных документов, звукозаписей, фотографий, электронных носителей и т.п.

• Инструкции по долгосрочным восстановительным работам: методы и приемы, включающие идентификацию документов и наклеивание ярлыков, удаление сажи и копоти, очистку, сортировку и перемещение, ремонт, перенос и т.п.

• Список лиц для связи с внешними организациями, имена, адреса, домашние и служебные телефоны сотрудников, отвечающих за действия в аварийных ситуациях.

• Помещение, которое может быть использовано для учёта и упаковки поврежденных документов.
• Контракты с местными предприятиями, имеющими морозильные установки.
• Контракты с предприятиями, располагающими оборудованием для вакуумной сушки.
• Договоренность с транспортными агентствами.
• Необходимый резервный запас средств для перевозки, очистки и сортировки документов.
• Учетно- регистрационная документация: достаточное количество экземпляров любых бланков, которые могут понадобиться в процессе спасательных работ, включая инвентарные книги, упаковочные листы, бланки требований и заказов на поставку и т. п.
• Информация для бухгалтерии: описание резервных бюджетных средств, предусмотренных на восстановительные работы, и процедура получения санкции на доступ к ним.
• Информация о страховании: пояснения о степени покрытия; заявление о выплате страхового возмещения; требования к ведению записей; ограничения на допуск персонала или добровольцев в зону бедствия; информация о процедуре обращения за государственной/ федеральной помощью.

Немедленное реагирование

• Следовать установленным инструкциям по действиям в чрезвычайных ситуациях: оповещение о тревоге, эвакуация персонала, обеспечение безопасности в зоне аварии.
• Установить связь с руководителем группы немедленного реагирования, с тем чтобы он дал необходимые указания членам группы.
• Когда снова будет разрешен допуск на место происшествия, произвести предварительную оценку степени ущерба и, соответственно, потребностей в оборудовании, резервных средствах и необходимых работах.
• Стабилизировать, в случае необходимости, влажностный режим во избежание роста плесени.
• Произвести фотографирование поврежденных документов и оборудования для оформления требования о выплате страхового возмещения.
• Выделить помещение для учета и упаковки документов, подлежащих замораживанию, а также помещение для воздушной сушки отсыревших документов и документов, нуждающихся в незначительном ремонте.
• Перевести поврежденные водой документы в ближайшее учреждение или предприятие, располагающее морозильными камерами.

Просушка намокших документов

Ознакомление с различными методами сушки документов любых типов должно быть частью плана подготовки к ликвидации последствий аварий и стихийных бедствий. Все перечисленные ниже методы просушки имеют свои достоинства и недостатки:
• Воздушная сушка.
• Обезвоживание.
• Сушка вымораживанием.
• Вакуумная сушка теплом.
• Вакуумная сушка вымораживанием.

В тех случаях, когда для принятия решений требуется какое-то время, книги и документы следует заморозить, с тем чтобы приостановить процесс физического разрушения и биологического заражения.
Воздушная сушка

Воздушная сушка — простейший метод просушки отсыревшего (не намокшего!) материала. Отсыревшую книгу можно поставить вертикально, расправляя страницы верхом, страницы можно также переложить промокательной бумагой. И хотя этот метод достаточно эффективен и не требует сложного оборудования или дорогостоящих вспомогательных материалов, он трудоемкий, длительный, а в результате его применения не удается избежать деформации.

Восстановительные работы

• Определить приоритеты для работы по консервации. Проконсультироваться со специалистами по консервации относительно наиболее подходящих методов очистки и ремонта. Подсчитать приблизительную стоимость.
• Разработать этапы программы консервации, когда предстоит обработать большое количество документов.
• Отобрать экземпляры для списания, замены и переплета (из числа тех, для продления сохранности которых нужны специальные меры).
• Произвести уборку и привести место аварии в прежнее состояние.
• Переместить обработанные документы в восстановленное помещение.
• Проанализировать обстоятельства аварии и усовершенствовать план в свете приобретенного опыта.

Следует заблаговременно достичь договоренности с органами местного самоуправления и соответствующими ведомствами о возможности предоставления временных помещений для хранения документов и ряда других услуг. Сотрудничество с другими библиотеками, музеями и художественными галереями может дать значительную экономию времени, денег и ресурсов.
Режим хранения

<table>
<thead>
<tr>
<th>Температура и относительная влажность</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Воздействие температуры</td>
<td>25</td>
</tr>
<tr>
<td>Воздействие относительной влажности</td>
<td>25</td>
</tr>
<tr>
<td>Воздействие колебаний температуры и относительной влажности</td>
<td>25</td>
</tr>
<tr>
<td>Измерение и регистрация результатов измерения температуры и относительной влажности</td>
<td>26</td>
</tr>
<tr>
<td>Рекомендуемые уровни температуры и относительной влажности</td>
<td>26</td>
</tr>
<tr>
<td>Влияние местных климатических условий на относительную влажность</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Состояние атмосферного воздуха и вредные примеси</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Газообразные примеси</td>
<td>27</td>
</tr>
<tr>
<td>Другие примеси</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Световой режим</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Типы осветительных приборов</td>
<td>28</td>
</tr>
<tr>
<td>Измерение уровней освещенности и ультрафиолетового излучения</td>
<td>29</td>
</tr>
<tr>
<td>Рекомендуемые уровни освещенности</td>
<td>29</td>
</tr>
<tr>
<td>Нормы освещенности при экспонировании</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Плесень</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Проверка на наличие биологических повреждений</td>
<td>30</td>
</tr>
<tr>
<td>Очистка документов при биологическом повреждении</td>
<td>30</td>
</tr>
<tr>
<td>Обработка помещений при биологическом повреждении</td>
<td>31</td>
</tr>
<tr>
<td>Предупреждение появления плесневого гриба</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Насекомые и другие вредители</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Насекомые</td>
<td>32</td>
</tr>
<tr>
<td>Другие вредители</td>
<td>32</td>
</tr>
<tr>
<td>Обработка документов, поврежденных насекомыми</td>
<td>33</td>
</tr>
<tr>
<td>Предупреждение повреждения насекомыми и другими вредителями</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Улучшение условий хранения</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Практические меры по улучшению условий хранения</td>
<td>35</td>
</tr>
<tr>
<td>Системы отопления, вентиляции и кондиционирования</td>
<td>35</td>
</tr>
<tr>
<td>Уборка и содержание здания</td>
<td>36</td>
</tr>
</tbody>
</table>
Режим хранения

Воздействие таких факторов, как температура, влажность, освещенность, состояние атмосферного воздуха и вредные примеси в воздухе, могут вызвать или стимулировать реакции разрушения. Химический, механический и биологический характер этих реакций различается в зависимости от материальной основы документа.

Относительная влажность

Относительная влажность может быть выражена как отношение (в %) упротности водяного пара к упротности насыщенного пара при той же температуре.

Относительная влажность — довольно сложное для понимания понятие и требует пояснения.

Если водяной пар в одном кубическом метре воздуха при нормальном атмосферном давлении изохорно и изохорно квадратная, то абсолютная влажность пробы воздуха будет известна и выражена в граммах воды на один кубический метр воздуха (g/m³).

Гигрометрическая схема, приведенная выше, показывает максимальный объем водяного пара, который может содержаться в кубическом метре воздуха при определенной температуре. По мере повышения температуры воздуха увеличивается и объем водяного пара, содержащегося в воздухе.

При 10°C воздух может содержать не более 9 г водяного пара. Воздух находится в состоянии насыщения паром влажности, и такое состояние называется насыщенным. При 20°C точка насыщения равняется 17 г/м³.

Таким образом, если один кубический метр воздуха в закрытом контейнере содержит 9 г водяного пара при 20°C, то абсолютная влажность равняется 9 г/м³. Если же в контейнер добавить 3 г воды, она испарится и увеличит абсолютную влажность до 12 г/м³. Если добавить еще 8 г воды, то 5 г испарятся, а 3 г останутся на дне контейнера в виде лужи, так как при 20°C в воздухе может содержаться только 17 г/м³ водяного пара.

Относительная влажность воздуха в контейнере, в котором содержится только 9 г водяного пара, была бы:

относительная влажность пробы воздуха = \frac{9}{17} = 0,53, или 53%
относительная влажность насыщенного воздуха

Относительная влажность зависит от температуры. Если при повышении температуры содержание влаги в воздухе не увеличивается, относительная влажность понижается.

Итак, если воздух в контейнере нагреть до 25°C (гигрометрическая диаграмма показывает, что при этой температуре один кубический метр воздуха может содержать 23 г водяного пара), то относительная влажность понизится

\frac{9}{23} = 0,39, или 39%

И наоборот, когда воздух в контейнере охлаждается до 15°C, относительная влажность повышается, даже если не добавлять воду. При 15°C воздух может содержать лишь 12,5 г/м³ водяного пара:

\frac{9}{12,5} = 0,72, или 72%

Если же воздух охлаждать до 9°C, он станет насыщенным водяным паром, а относительная влажность поднимется до 100%. При дальнейшем охлаждении воздуха на стенках контейнера появятся капли воды, так как при конденсации воздух может выделять определенную часть влаги. Температура, при которой начинает конденсироваться во-
данный пар (т.е. температура, при которой воздух достигает насыщения), называется точкой росы.

В зимнее время в помещениях комнатный воздух вблизи окна охлаждается ниже точки росы, и тогда на оконном стекле появляются капли воды.

<table>
<thead>
<tr>
<th>Температура сухого термометра (°С)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>

Температура и относительная влажность

Когда обсуждаются вопросы обеспечения температурно-влажностного режима, необходимо иметь в виду следующее:

- Прежде всего важно знать, что идеального уровня температуры и относительной влажности для всех типов продуктов не существует. Есть лишь такие показатели и уровни, при которых можно добиться минимальных изменений материальной основы документов и объектов. Температура или влажность, приемлемые для одного объекта, могут оказаться губительными для другого. Например, фотопленка, магнитные записи и цифровые носители должны храниться при низкой температуре и небольшой относительной влажности, чтобы была обеспечена их долговечность, в то время как для сохранения эластичности пергамена и веленевой бумаги требуется относительная влажность выше 50%.

- Имеется достаточно научных данных, чтобы предположить, что бумага сохранит химический состав и механические свойства в течение более длительного времени при постоянных низкой температуре хранения (ниже 10°С) и относительной влажности (30—40%).

- Однако если книжные блоки в переплете из кожи или пергамена сохраняются в хорошем состоянии при низкой относительной влажности, сам переплет неизбежно пострадает. Для поддержания переплета в "рабочем" состоянии необходима относительная влажность не менее 50%. Поэтому следует тщательно вз вещать все "за" и "против", решая, какие уровни температуры и относительной влажности будут более благоприятными для хранения тех или иных видов документов и к чему следует стремиться: предупреждать химические или механические повреждения документа, сохранять содержание или материальную основу документа.
Воздействие температуры

• Уже неоднократно подчеркивалось, что при каждом повышении температуры на 10°С скорость химических реакций, приводящих к разрушению традиционных библиотечных и архивных материалов, таких как бумага и книги, удавляется. И наоборот, при каждом понижении температуры на 10°С темпы разрушения снижаются вдвое.
• Повышенная температура в сочетании с низкой относительной влажностью в конечном итоге приведет к деградации (высыханию) и ломкости некоторых материалов, таких как кожа, пергамент, бумага, клеящие вещества, связующий слой эмульсионной ленты в аудио- и видеокассетах и т.п.
• Высокая температура при повышенной относительной влажности стимулирует рост плесени и благоприятствует появлению насекомых и других вредителей.
• Холод (ниже 10°С) при высокой относительной влажности и плохой циркуляции воздуха может привести к сырости и, как следствие, к появлению плесени.

Воздействие относительной влажности

Органические вещества гигроскопичны. Они впитывают и выделяют воду по мере увеличения и уменьшения относительной влажности; в результате материалы, содержащие эти вещества, расширяются и сжимаются при повышении и понижении уровня влажности.
• При относительной влажности 55—65% возможно минимальное механическое повреждение материальных основы документа, поскольку материалы сохраняют свою эластичность.
• Повышение уровня относительной влажности (выше 65%) может привести к размягчению клеящих веществ и потере их свойств во всех библиотечных материалах — как современных, так и традиционных.
• При относительной влажности выше 70% возникает серьезная опасность биологической атаки, даже если температура хранения остается низкой. В помещениях с плохой циркуляцией воздуха относительная влажность не должна превышать 60%, и даже когда система кондиционирования работает хорошо, относительная влажность не должна превышать 65% во избежание повреждения плесени.
• Пониженная относительная влажность (менее 40%) замедляет процесс химических изменений, но при этом материальная основа документов может стать более жесткой, ломкой, может потрескаться или сжаться.

Воздействие колебаний температуры и относительной влажности

• Как уже отмечалось выше, если содержание влаги в воздухе в помещении поддерживается на одном уровне, внезапное понижение температуры приведет к резкому повышению уровня относительной влажности и к конденсации влаги, а следовательно, к появлению плесени и другим проблемам, вызванным избытком влаги.
• Незначительные колебания в течение длительного времени вызывают минимальные изменения в материалах, подвергшихся расширению или сжатию.
• Резкие колебания температурно-влажностного режима, имевшие место в течение недопустимого времени, влияют на размеры и механические свойства органических материалов и могут привести к их повреждению.
• К видимым повреждениям относится: отслаивание красочного слоя, коробление крышок книжных переплетов, потрескавшийся эмульсионный слой на фотографиях.
Режим хранения

Измерение и регистрация результатов измерения температуры и относительной влажности

Режим хранения во всех помещениях необходимо регулярно контролировать и записывать показания с помощью надежных термо- и гигрометрических или электронных записывающих приборов. Регулярная поверка очень важна, так как она позволяет документально фиксировать показатели состояния окружающей среды; обосновывать требования об установке измерительных приборов; показывает, когда контрольно-измерительное оборудование действует нормально и поддерживает надлежащий режим хранения.

В тех случаях, когда оборудование регистрирует заметные отклонения от установленных норм, следует сообщить об этом руководству для незамедлительного принятия соответствующих мер.

Рекомендуемые уровни температуры и относительной влажности

- Общее требование: библиотечные документы должны храниться и использоваться при стабильном режиме, т.е. в помещениях не должно быть слишком жарко, слишком сухо и слишком влажно.
- В процессе неоднократно предпринимались попытки установить "идеальные" показатели температурно-влажностного режима хранения. Однако в настоящее время признается, что поддержание температуры в здании и в помещениях для хранения документов на одном уровне в течение всего года непрактично и нерационально и может потребовать больших затрат, особенно в тех зонах, где отклонения от установленных норм достигают критических отметок.
- Если температура поднимается выше 20°С, чрезвычайно важно, чтобы уровень относительной влажности не был выше или ниже допустимых пределов.
- В учреждениях температурный режим часто устанавливается на таком уровне, который считается наиболее благоприятным для человека при сидячей работе, т.е. 20–22°С. Люди чувствительны к колебаниям температуры, но почти не реагируют на изменение влажности воздуха, тогда как для большинства типов документов желательно обратное.

Установивая уровень относительной влажности, всегда приходится идти на компромисс и руководствоваться следующими факторами:

- характер фондов;
- местные климатические условия;
- доступные средства контроля режима хранения.

С учетом этих факторов, нужно соблюдать следующие параметры:
- уровень влажности, достаточный для поддержания пластичности;
- уровень влажности должен быть достаточно низким, чтобы замедлить разрушение документов и предотвратить появление насекомых и пlesen;
- уровень влажности не должен нанести ущерб библиотечному зданию вследствие опасности конденсации в холодную погоду.

Влияние местных климатических условий на относительную влажность

- В частях земного шара с влажным климатом, где на протяжении года относительная влажность составляет не менее 65% — и даже значительно больше — в течение длительного периода, нерационально ожидать, что удается поддерживать уровень влажности ниже 65%, если только здание не оборудовано системой кондиционирования, рабо- тающей день и ночь круглый год, что требует огромных расходов. В таких регионах прежде всего нужна хорошая система циркуляции и вентиляции воздуха, чтобы воспрепятствовать появлению пlesenи.

Если в клапанчатах температура значительно ниже, чем в комнатах, где работают с документами, то в этом случае важно обеспечить возможность акклиматизации во избежание конденсации влаги и коробления.
Режим хранения

- В местностях с суровым климатом, где относительная влажность редко превышает 45%, можно добиться поддержания влажности воздуха лишь на уровне 40—45%, в противном случае неизбежны большие затраты. И опять следует отметить, что главное — не допускать колебаний влажности, охлаждать воздух, хранить определенные документы, например на коже или пергамене, в помещении, где относительная влажность может поддерживаться на уровне не ниже 45%.
- В регионах с умеренным климатом, где лето бывает теплым, а зима холодной, проблем еще больше, чем в странах с суровым или влажным климатом. Летом уровень влажности может соответствовать норме, но зимой, когда работает система центрального отопления, днем в здании может быть жарко и сухо, а ночью, если отопление отключается, становится холодно и сыро. Такие колебания причиняют большие вреда, чем постоянно высокая или низкая относительная влажность в течение всего года.
- В северных районах Америки, Канады и северо-восточной Европы чрезвычайно трудно поддерживать зимой 50%-й уровень влажности и избежать при этом конденсации. В некоторых учреждениях прибегают к акклиматизации фондов, постепенно снижая уровень относительной влажности по мере приближения зимы и повышая к лету.

Состояние атмосферного воздуха и вредные примеси

Загрязнение воздуха — неизбежное явление в городских и промышленных районах и еще одно причина повреждения бумаги и других органических материалов. Вещества, загрязняющие воздух, могут быть и газообразными примесями, и частицами грызни и пыли.

Газообразные примеси

Основные вредные газообразные примеси — это продукты сгорания топлива. Такие вредные примеси, как сернистый ангидрид (духовка серы), сероводород, двуокись азота, вступают в соединение с влагой в воздухе, образуя кислоты, которые вызывают повреждение материалов основы документов. Озон действует как очень сильный окислитель и причиняет вред всем органическим материалам. Они образуются при соединении солнечного света и двуокиси азота в выхлопных газах автомобильных двигателей, а также может возникать в электростатических фильтровальных системах в кондиционерах и при работе электроизоляционного копировального оборудования.

Курение, приготовление пищи, газообразные выделения из химически нестойких материалов, таких как пленка на нитроцеллюлозной основе, различные виды краски, используемые при отделочных работах, огнезащитные покрытия, клеящие вещества, могут стать причиной появления вредных газообразных примесей. Дерево, особенно дуб, береза, бук, выделяет уксусную и другие кислоты, а букареванная резина выделяет летучие сернистые соединения, чрезвычайно вредные для фотографий.

Химический состав материалов, из которых изготовляются оборудование и средства для хранения, транспортирования и экспонирования документов, должен быть испытан надежными методами, с тем чтобы установить, могут ли эти материалы быть источником вредных выделений.

Другие примеси

Частицы сажи, грязи и пыли способствуют истиранию, загрязнению и деформации основы документов. Пыль и грязь, впитавшие газообразные примеси из воздуха, становятся очагами вредных химических реакций при осаждении на документах. Некоторые примеси могут способствовать и росту плесени. Современные носители, такие как магнитные ленты и диски и оптические диски, приводят повышенную чув-
Режим хранения

Стабильность к пыли и грызунам.

В составе пыли обычно содержатся частицы эпидермиса человека, мельчайшие частицы минеральных или растительных материалов, волокна ткани, промышленный дым, жировые вещества в отпечатках пальцев и другие органические и неорганические вещества. Часто присутствуют и соли, например хлористый натрий (источник — морской воздух) или фрагменты эпидермиса, или острь кристаллы двуокиси кремния, попавшие с песком. И во всех этих химических смесах находятся споры плесени, грибов и микроорганизмы, которые живут на органических материалах в пыли (отпечатки пальцев, к примеру, служат благоприятной культурой средой). Газы гидроксипептида, удерживают влагу, и это свойство может стимулировать рост плесени, а также повышает коррозионные свойства солей, ускоряет реакцию гидролиза и выделение кислот.

Световой режим

Свет — это энергия, а именно энергия нужна для начала химической реакции. Все световые волны: видимые, инфракрасные и ультрафиолетовые — способствуют разложению органических материалов при окислительных реакциях. Ультрафиолетовое излучение больших энергий наиболее вредно. Однако свет во всех этих формах и особенно при наличии вредных примесей в воздухе приводит к ослаблению и ломкости целлюлозы, клея, ткани и кожи. Под воздействием света один вид бумаги отбеляется, другие — желтеют или темнеют; материалы и краски выцветают или меняют цвет, теряют четкость текстов и фотографий, стирается внешний вид произведений искусства и переплетов. Всем, кто несет ответственность за сохранность библиотечных фондов, важно знать о свете следующее:

- Химические реакции, начавшиеся под воздействием света, продолжаются даже после того, как источник света удален и документы помещены в темное хранилище.
- Повреждения, вызванные световым облучением, необратимы.
- Световое облучение имеет кумулятивное действие. Одна и та же степень повреждения может быть результатом слабого, но кратковременного светового облучения или сильного, но длительного: световой поток 100 лк (люкс — единица освещенности), воздействуя на картину в течение 5 часов, дает облучение 500 люкс/час, эквивалентное освещенности 50 лк в течение 10 часов.
- Источники видимых и инфракрасных световых волн, такие как солнце и лампы нагревания, являются и источниками тепла. Повышение температуры ускоряет химические реакции и влияет на относительную влажность.
- Дневной свет содержит самую высокую долю ультрафиолетового излучения и поэтому должен пропускаться через фильтры.

Типы осветительных приборов

- Лампы накаливания относятся к наиболее распространенным видам источников электрического света. Свечение возникает при прохождении электрического тока по тонкой вольфрамовой проволоке (нити или спирали). Лампы накаливания дают обыч- но меньше вредного ультрафиолетового излучения, чем люминесцентные лампы (или лампы дневного света), но они выделяют большое тепло через инфракрасное излучение. Кроме того, лампы накаливания имеют меньшую световую отдачу и перегорают чаще, чем лампы дневного света.
- В галогенных лампах накаливания (известных как кварцевые галогеные, или просто галогенные, лампы) свечение также возникает при прохождении электрического тока.
Режим хранения

через вольфрамовую нить или спираль, но в колбе содержится, кроме инертного газа, газоген, который и позволяет спирале производить, при более высоких температурах, более сильный "белый" световой поток. Газогенные лампы в три-пять раз долговечнее обычных ламп накаливания и выделяют примерно во столько же раз больше ультрафиолетовых лучей.

• Люминесцентные (флюоресцентные) лампы основаны на применении паров ртути под низким давлением, которые вызывают ультрафиолетовое излучение; оно, в свою очередь, создает фосфорный слой, излучающий видимое свечение. Использование различных фосфорных соединений создает цветовые оттенки свечения в этих лампах. И хотя в лампах этого типа создается световой поток с высоким содержанием ультрафиолетовых лучей, обычно именно они устанавливаются в библиотеках, так как они выделяют меньше тепла и более экономичны.

Измерение уровней освещенности и ультрафиолетового излучения

Очень важно измерять и регистрировать показания освещенности и ультрафиолетового излучения в течение всего года, так как показания изменяются в зависимости от времени года.

Прибор для измерения освещенности — люксметр — измеряет интенсивность видимого светового потока в люксах (люменах на кв. метр). Фотокамеры со встроенным измерительным устройством также могут использоваться для измерения уровня освещенности.

Ультрафиолетовый счетчик применяется для измерения интенсивности ультрафиолетового излучения (длина волны — менее чем 400 нанометров) в микроваттах (мкВт) ультрафиолетового излучения на люмен.

Рекомендуемые уровни освещенности

Все работы по обслуживанию музейных, галерей и выставочных залов обычно выполняются специалистами. Так должно быть и в библиотеках при установке осветительных приборов в читальных залах и помещениях для хранения документов. Если 200—300 люкс — достаточная освещенность для читальных залов, достичь такого уровня при сочетании естественного и искусственного освещения, который удовлетворен бы персоналом и пользователями, довольно трудно.

В книгохранилищах и других помещениях, где хранится документы, вполне достаточно обеспечить освещенность в 50—200 люкс. Однако для поддержания такого уровня необходимо исключить все источники естественного света и ограничиться лишь искусственным освещением. Осветительные приборы, дающие ультрафиолетовое излучение свыше 75 мкВт на люмен, должны быть снабжены фильтрами.

Нормы освещенности при экспонировании

При экспонировании документов поток света, падающего на экспоненты, должен быть слабым. Обычно рекомендуется норма освещенности не более 50—70 люкс по восемь часов в день в течение 60—90 дней для особо чувствительных к воздействию света материалов, таких как цветная бумага, газеты и некоторые виды переплетов (например, тканевые), а также чернила в рукописях и акварельные краски.

Плесень

Споры грибов, которые порождают плесень, всегда присутствуют в воздухе и на предметах и начинают быстро расти при благоприятных условиях. Такими условиями яв-
Режим хранения

ляются влага (при относительной влажности выше 65%), темнота и плохая система циркуляции воздуха. Тепло также относится к этим факторам, но некоторые виды пlesenей и бактерий разрастаются и при низких температурах (Достаточно вспомнить, что иногда случается в холодильниках).

Под воздействием пlesenей бумага и фотографии теряют прочность, покрываются пятнами, деформируются. Общезвестно, что обесцвечивание бумаги из-за появления бурых ("жисных") пятен объясняется реакцией, в которую вступает пlesenь с некоторыми элементами в составе бумаги. Так же, кожа, пергамент и клеящие вещества также подвержены воздействию пlesenей.

Проверка на наличие биологических повреждений

• Проверкой можно установить активность или инертность пlesenей. Как правило, активная пlesenь — влажная, вязкая и размазывается при прикосновении. Инертная пlesenь — сухая, пронзикообразная и легко счищается мягкой щеткой.

• Если пlesenью поражена значительная часть фонда, необходимо изолировать эту зону и не приступать к очистке без предварительной консультации с микологом, который определит возможное наличие токсичных видов пlesenей. Некоторые виды пlesenей, чаще всего встречающиеся в библиотеках, могут представлять серьезную угрозу для здоровья, вызывая головную боль, тошноту, раздражение глаз и кожи, удушье.

• Возможно, для обработки придется пригласить специалиста по консервации или хотя бы проконсультироваться с таковым, чтобы очистить зараженные документы и придать помещения в состояние, пригодное для хранения документов.

• Если поражены лишь отдельные документы, их следует до начала обработки поместить в коробку, выполненную сухой бумагой. Рекомендуется положить в коробок какой-нибудь снискивающий материал, например пакетики с патентованным силикагелем. Эта мера предупредит распространение спор, но не остановит рост пlesenей, так как герметически закрытые пластиковые пакеты потенциально могут создать микроклимат.

• Альтернативное решение: переместить зараженные документы в зону с относительной влажностью ниже 45%, изолировать от всего фонда и дать им просохнуть.

• Если условия не позволяют немедленно выссушить наносящие документы или если их слишком много, их нужно заморозить, а впоследствии размораживать, высушивать и очищать небольшими партиями. Возможна также сушка вымораживанием с последующей очисткой.

• Высушенные документы необходимо очистить и далее хранить при стабильном режиме. Режим хранения имеет решающее значение, так как даже после очистки остаются мельчайшие частицы плесневых грибов.

Очистка документов при биологическом повреждении

• Если масштабы повреждения невелики, а средства ограничены, следует вынести зараженные экземпляры из здания, предпочтительно когда стоят ясная и сухая погода, и очистить их мягкой белой щеткой, направляя движение от себя и по ветру.

• Удалить пlesenь нужно пылесосом, оборудованным высокоэффективным воздушным фильтром, способным удерживать до 99,97% всех частиц меньше 0,3 микрона. Обычный пылесос не в полной мере подходит для этого: частое всасывание бывает слишком мощным и..

Обрабатывать зараженные микроорганизмы документы необходимо в перчатках, респираторе и защитной одежде.
Даже если в вазе растворен фунгицид, это не может надежно препятствовать повторному распылению частиц плесени.

В тех случаях, когда не было возможности остановить рост активной плесени на срезе орнаментов, следует использовать для срезов специальные препараты, которые увеличивают их поглощение плесени.

Контроль окружающей среды — важнейшее средство борьбы с плесенью.

Обработка помещения при биологическом повреждении

* Прежде всего необходимо установить причину появления плесени.

* В комнате, в которой обнаружены признаки плесени, должна быть просушена и тщательно обработана, прежде чем туда будут возвращены поврежденные документы. При заражении в средних или больших масштабах нужно обратиться в службу, которая проведет осушку и очистку помещения.

* Если уровень отнесенной плесени превышает 55%, его необходимо принять серьезно, прежде чем документы будут возвращены в эту зону. Возможно, для этого потребуется лишь отрегулировать системы отопления, вентиляции и кондиционирования или установить портативный осушитель воздуха. Следует также проверить, нет ли протечек
Режим хранения

или конденсата на стенах здания снаружи. Нужно осмотреть змеевик теплообменника в кондиционерах, где создается особенно благоприятная среда для микроорганизмов, и обработать его бытовым дезинфицирующим средством.

• Стеллажи и полы нужно обработать пылесосом с высококоэфективным фильтром, а затем дезинфицирующим средством. Прежде чем вновь разместить в обработанной зоне документы, следует в течение нескольких недель контролировать уровень относительной влажности, чтобы удостовериться, что он не превышает 55%.

• Обработанные документы, возвращенные на место, необходимо ежедневно осматривать, чтобы предупредить повторное возникновение плесени.

Предупреждение появления плесневого гриба

• Проверка новых поступлений на наличие плесени.
• Поддержание умеренных температуры и относительной влажности (ниже 20°C и 65%).
• Обеспечение циркуляции воздуха. Регулярная обработка пылесосом.
• Стеллажи для книг не следует устанавливать вплотную к наружным стенам. Разница в температуре и влажности внутри и снаружи здания может привести к появлению влаги на стенах. Свободная циркуляция воздуха у стен позволит влагу испариться.
• Не следует разводить растения в здании.
• Подвальные и часть стен ниже уровня земли должны быть водонепроницаемыми.
• Каапы и водостоки должны размещаться так, чтобы вода не скапливалась около наружных стен. Каапы и водостоки следует регулярно осматривать, чтобы своевременно устранить засорение.
• Дождевые воды должны размещаться так, чтобы вода не попадала на стены.
• Регулярная проверка фондов поможет обнаружить биоповреждения на ранней стадии.

Насекомые и другие вредители

Насекомые

К насекомым, причиняющим наибольший вред в библиотеках и архивах всего мира, относятся тараканы, "серебряные рыбки", книжные вши, жуки и термиты.

• Они пожирают органические вещества, такие как бумага, клейстер, различные виды клея, желатиновые прокладки, кожу, тканевые переплеты; птичьи гнезда также являются богатым источником пищи для насекомых, а птичий помет имеет коррозионные свойства.
• Они предпочитают тепло, темноту, сырую, грязь и плохо проветриваемые помещения.
• Наносимый ими ущерб необратим: изъеденные насекомыми тексты и изображения погибают, а повреждения в виде мелких отверстий в бумаге и фотографиях невозможно устранить.
• Термиты могут разрушить здания и целые коллекции.

Другие вредители

Грызуны, такие как крысы и мыши, могут полностью уничтожить фонды:
• Они грызут книги, чтобы добыть бумагу для своих нор.
Режим хранения

- Они могут вызывать пожар, прогрызая изоляционный материал в электрокабеле.
- Они точат зубы, грызя библиотечную мебель и оборудование.
- Их помет разделяет органические материалы и оставляет нестираемые пятна.

Обработка документов, поврежденных насекомыми

- Всегда выбирайте наименее токсичные средства. Например, если ящик с книгами по-
 вражден "серебряной рыбкой", не прибегайте к химической обработке, а очистите
 книги вручную, с помощью пылесоса и мягкой щетки. Если нет твердой уверенности
 в активности вредителей, очистите документ, поместите в герметичные чехлы и через
 некоторое время осмотрите его, чтобы убедиться, что нет новых признаков повреж
 дений. Следите за тем, чтобы новые поступления или отдельные документы с при
 знаками биологических повреждений были отделены от основного фонда.
- Обработка без применения токсичных средств является не только экологически наи
 более безопасным методом, но и самым ответственным подходом в отношении многих
 видов документов:

 Многие фумиганты могут сделать невозможной длительную сохранность некоторых
 видов документов.
 Нет ни одного фумиганта, который был бы безвреден для всего фонда в
 целом.
 Фонды могут пострадать при опрыскивании аэрозолями на водной или мас
 ляной основе.
 Фумигация не предохраняет фонды от повторной биологической атаки.

- Очень важно сразу же после обработки принять меры, чтобы предупредить возможно
 сть новой биологической атаки. Этими мерами может быть раздельное хранение
 новых поступлений и зараженных частей фонда, строгая изоляция любых коллекций
 с признаками активного заражения, очистка, улучшение условий хранения.

 В некоторых учреждениях прибегают к замораживанию как альтернативе химической
 фумигации. Если быстро понизить температуру по крайней мере до −35° и поддерживать
 на этом уровне в течение нескольких дней, можно добиться прекращения жизнедея
 тельности большинства насекомых. Один тип промышленных морозильных установок
 пригодны для обработки документов при биоповреждениях, в других же понижение тем
 пературы происходит недостаточно быстро. Если температура опускается медленно, не
 которые насекомые могут впасть в состояние "бесчувствия" и пережить обработку. Само
 собой разумеется, очень важно, чтобы документы не пострадали от низких температур
 и чтобы не была допущена конденсация.

Предупреждение повреждения насекомыми и другими
 вредителями

В настоящее время все признаны, что комплексные меры по борьбе с биологическими
 повреждениями должны составлять часть любой программы обеспечения сохранности
 библиотечных фондов. При этом подразумевается следующее:
 • регулярный осмотр здания для выявления насекомых и грызунов;
 • требование, чтобы весь персонал — от уборщика до библиотекаря — был бдительным
 и сообщал о замеченных признаках повреждения и активного заражения;
 • проверка всех поступлений до их приема на хранение;
 • использование липких ловушек. Их преимущество заключается в том, что насекомые
 попадаются в них раньше, чем их заметят; в них попадаются разные виды насекомых;
 их можно устанавливать в помещениях, осмотр которых затруднен; пойманных насе-
комых можно определить и пересчитать; ловушки — хороший показатель количественного состава насекомых в том или ином помещении; они также помогают уберечься в успехе или неудаче принятых мер;
• основные знания биологии и жизненных циклов насекомых и других вредителей; это поможет предположить, когда и где они будут размножаться, что будут поедать и где обитать;
• устранение или содержание в закрытых контейнерах всех источников возможного заражения: в помещении не должно быть самих или напитков, в здании нельзя разрезать дверь или разводить огонь или растения;
• поддержание режима, неблагоприятного для насекомых и других вредителей, т. е. помещения, где хранятся документы, должны быть чистыми, проветриваемыми, сухими и с хорошей циркуляцией воздуха;
• меры, препятствующие проникновению насекомых и грызунов в здание; для этого нужно следить, чтобы ворота были закрыты плотно, чтобы на дверях и окнах были установлены сетчатые экраны и т.п.;
• использование наружных осветительных приборов, которые привлекают меньше насекомых (например, наружных ламп);
• проведение плановых мероприятий по санитарно-гигиенической обработке: вынос и уничтожение мусора в соответствии с инструкциями; регулярная проверка и уборка чердачных и подвальных помещений.

Улучшение условий хранения

Если наша цель — сохранить какую-нибудь коллекцию или отдельные документы в течение длительного времени или постоянно, то необходимо уделять особое внимание условиям хранения документов. Идеальный режим хранения подразумевает строгое контрольируемое температуру и относительную влажность, чистый воздух и хороший вентилятор, правильное освещение, предупреждение и недопущение вредных воздействий биологического повреждения. Хорошо выполненное хозяйственное административная работа, системы безопасности и меры по защите фондов от пожара, наводнений и других бедствий дополняют круг мер по обеспечению надлежащих условий хранения.

Библиотечные здания должны проектироваться, насколько это возможно, с учетом требований, связанных с обеспечением сохранности фондов. Эти требования влияют на многие аспекты планирования: архитектурный проект и расположение здания; строительные материалы, которые могут, при определенных обстоятельствах, использоваться для создания удовлетворительного микроклимата внутри здания, что предпочтительнее механическим систем кондиционирования воздуха; материалы для внутренних конструктивных элементов и отделки здания; материалы, использованные при изготовлении мебели и оборудования, включая стелажки и источники света — как естественного, так и искусственного.

Местные и традиционные строительные методы и материалы в регионах с субтропическим климатом часто обеспечивают лучшие условия для хранения библиотечных фондов, чем заимствованные и завезенные.

И всегда стоит предусмотреть наличие герметичных помещений в здании для тех документов, хранение которых требует жестко контролируемого температурно-влажностного режима.
Практические меры по улучшению условий хранения

Во многих библиотеках установка систем отопления, вентиляции и кондиционирования может обойтись слишком дорого или может требоваться для обеспечения сохранности лишь определенных коллекций. Тем не менее существует немало простых мер, которые могут улучшить "климатические" условия в библиотеках и обеспечить сохранность фондов.

Первым шагом к улучшению условий хранения должна быть герметизация всего здания. Даже только одна эта мера поможет улучшить физическое состояние здания, так как ограничит проникновение насекомых и грызунов, устранит возможность потери тепла или чрезмерного повышения температуры и загрязнения воздуха. Обеспечение водонепроницаемости здания поможет устранить просачиваемость влаги внутрь здания и значительно снизить уровень относительной влажности.

* Используйте вентиляционные решетки и уплотните изоляционными прокладками
Фотодокументы

Со времен изобретения фотографии в 1839 г. применялись различные методы получения изображения фотографируемого объекта. Некоторые материалы очень быстро разрушались, другие оказывались слишком чувствительными к любому механическому воздействию, и почти все фотоматериалы реагируют на окружающую среду и не только на температуру, относительную влажность и вредные примеси воздуха, но и на окислительные свойства веществ, выделяемых строительными материалами, красителями, деревянной мебелью, картоном и даже контейнерами, которые предназначены для обеспечения их сохранности. И если сохранностью фотодокументов должны заниматься специалисты, то персонал библиотеки может соблюдать определенные меры, чтобы поддерживать надлежащие условия хранения фондов фотодокументов.

Структура фотографий

Обычная фотография состоит из трех различных частей:

Основа: стекло, пластиковая пленка, бумага или бумага, покрытая пластиковой пленкой.

Связующий слой: эмульсия или другой светочувствительный связующий слой, чаще всего желатина, но также альбумин или коллоиды. Эмульсионный слой соединяет вещество, используемое для получения изображения, с основой.

Материал для получения изображения: галогениды серебра, красящие вещества или частицы пигмента, растворенные в эмульсии или связующем слое.

За десятилетия развития фотографии применялись самые различные материалы для получения изображения, но почти все черно-белые фотографии делались с применением галогенидов серебра, растворенных в желатине.

Использование и обращение

Фотодокументы — чрезвычайно непрочный материал и требуют особо бережного обращения, поэтому персонал и пользователи должны соблюдать следующие правила:

* по возможности, оригиналы замените копиями;
* работать с фотографиями и чистыми хлопчатобумажными перчатками, не оставляющими волокон, и никогда не прикасаться к эмульсионной стороне любого фотографического изображения — фотоотпечатка, негатива, документа на прозрачной основе, диагпозитива и др.;
* подготовить чистую рабочую поверхность;
* держать фотографию двумя руками или на подложке из плотного картона;
* не пользоваться липкой лентой, скрепками, кнопками, зажимами или круглыми канцелярскими резинками;
* по всем вопросам хранения и обеспечения сохранности фотографий обращаться к специалистам.

Контейнеры

Все контейнеры должны пройти проверку на светочувствительность в соответствии со стандартом IT.2 1988, разработанным Американским национальным институтом стандартов. Этот точный и эффективный тест выявляет степень воздействия средств хранения на фотодокументы. Многие поставщики и производители таких средств проводят свою продукцию по методу, предписанному стандартом. По возможности, при-
обратите только прошедшие текст материалы или хотя бы требуйте, чтобы любая приобретаемая продукция была проверена на светочувствительность.

Контейнеры для хранения фотодокументов обычно изготавливаются из бумаги (или картона) и из синтетических материалов. Бумага и картон должны соответствовать следующим критериям:
- высокое содержание целлюлозы (свыше 87%);
- нейтральное значение pH среды (около 6,5—7,5);
- допустимое содержание необнаруженных сернистых соединений;
- отсутствие латекса, буферных растворов, частицы металла, кислоты, перекисных соединений, формальдегида, вредных клеящих веществ.

Пластиковые контейнеры должны отвечать следующим критериям:
- не содержать пластфикаторов;
- их поверхность не должна быть шлифованной, покрытой каким-либо слоем или шероховатой;
- контейнеры из полиэтилена рекомендуются для хранения при стабильном режиме. Исключение составляют фотоснимки и негативы с особо слабой поверхностью (например, с отливающейся эмульсией или раскрашенные вручную), фотографии на стекле, ферритовы, фотографии в кассетах, оригиналы ранних негативов.

Рекомендуемый режим хранения

Фотодокументы чрезвычайно чувствительны к окружающей среде.

- Температура в помещениях для хранения фотодокументов должна быть достаточно низкой; фотодокументы должны быть защищены от избыточного света, ультрафиолетовог излучения и вредных примесей в воздухе.
- Черно-белые фотографии и негативы должны храниться при температуре ниже 18°C и относительной влажности 30—40%.
- Цветные фотографии и негативы должны быть помещены в холодное хранилище (температура ниже 2°C и относительная влажность 30—40%), чтобы обеспечить их сохранность в течение длительного времени, но предварительно следует проконсультироваться со специалистом.
- Для хранения собраний фотодокументов различных типов рекомендуется относительная влажность 35—40%.
- Не следует допускать колебаний температурно-влажностного режима.

Хранение

Фотографии. Рекомендуется каждую фотографию хранить в индивидуальном контейнере. Это уменьшает риск механического повреждения, защищает документ и обеспечивает физическую влагонепроницаемость. Поскольку бумага и картон могут скверниться, фотографии приходится хранить в них вынимать. Прозрачные пластиковые чехлы из двух листов полиэтиленовой пленки, соединенных по прымающим сторонам (буквой Г), с картонной подложкой оставляют изображение открытым, исключая, таким образом, опасность повредить лицевую сторону фотографии.

Особого внимания требуют фотоснимки (отпечатки), превышающие обычный формат, на картонной подложке. Часто картон содержит кислоту и поэтому теряет прочность. Ломкая подложка представляет опасность для изображения, так как картон может расплескаться на части при хранении или использовании, в результате будет повреждена фотография. Такие документы должны храниться в специальных контейнерах, и обращаться с ними нужно очень осторожно.

Различные виды фотодокументов, такие как негативы на стекле и пленке, контактные отпечатки на бумаге и цветные диагноз-литовы, должны храниться раздельно.

51
Фото- и кинодокументы

Помещенные в папки, обложки или конверты, фотографии могут храниться в вертикальном или горизонтальном положении в коробках с откидной передней крышкой, предназначенными для хранения архивных документов. Фотографии следует хранить в вертикальном положении, так как такое положение обеспечивает опору по всей площади листа и предохраняет их от механических повреждений, например от стибания. Однако вертикальное положение облегчает доступ к документам. При вертикальном хранении фотографии следует поместить в папки или конверты из бесскислотной бумаги или картона, которые, в свою очередь, нужно хранить в подвесных скоросшивателях или коробках для хранения архивных документов. Следует избегать чрезмерного наполнения контейнеров. При использовании подвесных папок фотографии не должны скользить, и не попадать одна под другую, кроме того, их не следует вставить и помещать обратно. Но в любом случае фотографии в контейнерах не должны быть уложены слишком плотно.

Отпечатки с негативов в альбомах следует переложить листами специальной бумаги, если будут обнаружены признаки механических повреждений, причиненных другим отпечаткам или листами альбома. Это не следует делать, если от дополнительного объема бумаги может пострадать переплет альбома. Не следует использовать и современные альбомы, в которых страницы обтянуты липкой пленкой или имеют пластиковые подложки.

Альбомы фотографий следует хранить в горизонтальном положении, предпочтительно в коробках, выстеленных несколькими слоями бесскислотной папиросной бумаги.

Негативы на стекле следует хранить в индивидуальных бумажных контейнерах в вертикальном положении в ящиках с мягким обивкой или в прочных коробках с картонными разделяльниками, установленными после каждой пяти пластин.

Негативы на пленке могут храниться в бумажных или пластиковых конвертах, помещенных в коробки или в подвесные скоросшиватели.

Фотографии на металлических пластинах, такие как дагеротипы и др., следует хранить в горизонтальном положении в их деревянных кассетах, а кассеты — в ящиках шкафов и/или в коробках. Коробки, содержащие фотодокументы, следует помещать на металлические стеллажи.

По мере возможности, фотодокументы примерно одного размера должны храниться вместе; совместное хранение фотодокументов разного формата может привести к механическому повреждению, кроме того, экземпляры небольшого размера могут затеряться. Независимо от формата фотографий, все контейнеры одной коробке должны быть одинакового размера и соответствовать размеру коробки. Не следует переполнять коробки.

Кинодокументы

Кинодокументы обычно бывают на пленке трех типов: основной пленки может быть нитрат целлюлозы, ацетат целлюлозы и полиэфир. К кинодокументам на пленке нитрат нитраты, позитивные изображения, кинофильмы, микрофильмы и другие изображения или аудиовизуальные документы, созданные кинематографическим способом.

Нитрат целлюлозы и ацетат целлюлозы — химически нестойкие материалы. Продукты деградации целлюлозы могут серьезно повредить и даже разрушить целые собрания кинодокументов. В частности, документы на нитрато-целлюлозной пленке должны храниться отдельно, так как она легко воспламеняется, особенно в состояниях деградации.
Пленка на основе нитрата целлюлозы

- Она производилась в 1889—1951 гг. и использовалась с 1900 по 1939 г.
- Она химически нестабильна и легко воспламеняется.
- При хранении при комнатной и даже более низкой температуре она медленно и не
 прерывно разрушается, в процессе чего выделяются вредные газы.
- Если выделяемые газы остаются в контейнере, в котором хранится пленка, процесс
 распада ускоряется: основа желтеет, затем становится бурой, липкой на ощупь, круп
 кой и наконец рассыпается в серо-коричневый порошок. Тогда наступает полное раз
 ршение изображения и звукоzapиси.
- Эта реакция может привести к самовозгоранию пленки и катастрофическим послед
 ствиям для хранящихся рядом документов, а также для людей и зданий.

Пленка на основе ацетата целлюлозы

- Используется с 1935 г., а после 1939 г. почти полностью вытеснила пленку на основе
 нитрата целлюлозы.
- При комнатной температуре медленно разрушается, выделяя газы, по запаху напомина
 ющие уксус, что дало название этому процессу — "уксусный синдром".
- Становится ломкой и разрушается полностью.
- До недавнего времени пленка на основе ацетата целлюлозы считалась более подхо
 дящей для архивных документов, однако в настоящее время становится очевидным,
 что и этот тип пленки не является стабильным.

Пленка на полиэфирной основе

Пленка на полиэфирной основе получила признание как безопасная пленка. Сейчас
для получения долговечных кинофотодокументов рекомендуется использовать пленки, ос
нова которых содержит полиэфир (полиэтилен терефталат).

Использование и обращение

Кинофотодокументы на пленке легко повредить, даже когда они находятся в хорошем
состоянии. На пленке и эмульсионном слое быстро появляются царапины, потертости,
изломы; жировые вещества и грязь, которые переходя на пленку при прикосновении к
ней руками, также представляют опасность для пленки, эмульсионного и светочув
ствительного слоя.

Опасность механического повреждения возрастает во много раз, когда пленка уже
начинает разрушаться. Кинофотодокументы на пленке в состоянии деградации становятся
очень ломкими, и многократное перемещение может нанести непоправимый вред.
Кроме того, в таком состоянии пленка может стать липкой и склеиться с другими до
кументами.

Теоретически храним и обработка документов на пленке не должны поручаться библи
отехникам без специальной подготовки, а их просеивание или копирование выполнять только специалисты по консервации кино- и фотодокументов. При работе с плен
кой необходимо надевать белые хлопчатобумажные перчатки, не оставляющие во
локон, брать документы только за края и работать в чистом, хорошо освещенном и
хорошо проветриваемом просторном помещении. В зоне, где обрабатываются и про
стаживаются документы на пленке, должно быть запрещено принимать пищу и курить.
Докольный контакт с разрушающимися негативами представляет опасность для здо
ровья, особенно если это большие собрания.

Продукты деградации на
трава в ацетате целлюлоз
зает к серез
ную угрозу для здоровь
и безопасности, поэтому
при работе с такой плен
кей следует соблюдать
меры предосторожности.
- Надевайте неопреновые перчатки.
- Следите за циркуляцией воздуха.
- Пользуйтесь респиратором.
- Снимайте контактные линзы.
- Ограничьте время экс
позиции.
Рекомендации по режиму хранения

Недавние исследования, проведенные в Институте по проблемам сохранности изображений (Image Permanence Institute) в г. Рочестер, США, показали прямую связь между температурно-влажностным режимом хранения и длительностью стабильного состояния. Результаты, опубликованные в руководстве по хранению документов на акетатной пленке IPNI storage guide for acetate film, позволяют прогнозировать эксплуатационный срок новых и уже разрушающихся кино- и фотодокументов при различных соотношениях относительной влажности и температуры.

Приведенная ниже схема показывает предполагаемые сроки службы при упомянутых ранее режимах хранения. Первая из двух колонок справа (количество лет в зависимости от режима хранения) показывает срок службы новых хинодокументов, вторая — уже разрушающихся.

<table>
<thead>
<tr>
<th>Режим хранения</th>
<th>Температура</th>
<th>Относительная влажность</th>
<th>Срок службы (в годах)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Служебное помещение с кондиционированием</td>
<td>21°C</td>
<td>50%</td>
<td>40—5</td>
</tr>
<tr>
<td>Хранение в проходящем помещении</td>
<td>18°C</td>
<td>35%</td>
<td>90—15</td>
</tr>
<tr>
<td>— —</td>
<td>13°C</td>
<td>30%</td>
<td>200—40</td>
</tr>
<tr>
<td>— —</td>
<td>4°C</td>
<td>30%</td>
<td>800—130</td>
</tr>
<tr>
<td>Хранение в холодильной камере</td>
<td>— —</td>
<td>30%</td>
<td>1500—400</td>
</tr>
<tr>
<td>— —</td>
<td>—18°C</td>
<td>30%</td>
<td>1500—400</td>
</tr>
</tbody>
</table>

Упомянутое выше руководство является ценным практическим пособием по хранению фондов. С его помощью можно подсчитать и сопоставить стоимость улучшения режима хранения и экономию за счет увеличения эксплуатационного срока. Данные, приведенные в руководстве, подтверждают, что хранение в холодильной камере — единственный реальный метод стабилизировать материал, который уже проявил признаки разрушения, и сохранить новый материал в хорошем состоянии.

Если по каким-либо причинам хранение в холодильной камере невозможно, помещение хранения должно быть оборудовано эффективной системой вентиляции, чтобы предотвратить накопление кислот газообразных веществ, которые служат катализатором процессов разрушения пленки на основе акетата или нитрата целлюлозы. В хранилище должно быть прохладно, сухо и должен поддерживаться постоянный температурно-влажностный режим.

Раздельное хранение

В идеальных условиях каждый тип документа на пленке должен храниться отдельно. Организация раздельного хранения помогает защитить другие кинофотодокументы от вредного воздействия продуктов деградации пленки на основе нитрата целлюлозы и акетата целлюлозы. В частности, под воздействием кислоты, выделяемой при разрушении нитроцеллюлозы, галогенидосеребро в изображениях выветшает, желатина в
эмульсионном слое размягчается и становится клейкой, металлические шкафы и контейнеры ржавеют. Раздельное хранение документов по типу пленки позволяет более эффективно контролировать физическую сохранность фонда.

Очень важно хранить документы разных типов раздельно, но не менее важно изолировать разрушающиеся документы от тех, состояние которых стабильно. Как упоминалось выше, продукты деградации могут вызвать разрушение и других кинодокументов.

Контейнеры

Для хранения документов на пленке используются те же типы контейнеров, что и для хранения фотографий.

Общие требования к условиям хранения

Кинодокументы на листовой пленке, например негативы и транспаранты, должны быть помещены в обложки; обложки хранятся либо в коробках на металлических стеллажах, либо в ящиках шкафов.

Рулонная пленка, например кинофильмы или микрофильмы, должна быть намотана на бобины (эмульсионным слоем внутрь) и помещена в плоские коробки из материалов, не содержащих пластифика́торы, хлор и перекисные соединения. Допускается использовать контейнеры из полиэтилена или полипропилена. Из коробок необходимо удалять любую бумагу или упаковочный картон, а также любую обертку; в случае необходимости хранить отдельно с соответствующей документацией.

Листовая и рулонная пленка должна храниться в горизонтальном положении на металлических стеллажах в прохладном, сухом и темном помещении с хорошо работающей системой кондиционирования.
Аудиовизуальные средства

Звукозаписи на граммофонных пластинках
 Шеллачные грампластинки 57
 Виниловые грампластинки 57
 Обращение при использовании 57
 Хранение 57
 Рекомендуемый режим хранения 58

Магнитные носители
 Обращение и использование 58
 Дублирование и восстановление 59
 Перенос на другие форматы 60
 Хранение 60
 Рекомендуемый режим хранения 60

Оптические носители
 Лазерные диски 60
 CD-ROM 60
 Обращение при использовании 61
 Маркировка 61
 Очистка 61
 Хранение 61
 Рекомендуемый режим хранения 61
Звукозаписи на граммофонных пластинках

Наиболее распространенным типом носителя звукозаписей в библиотечных фондах являются долгоиграющие граммофонные пластинки из поливинилхлорида (диаметр 30 см и 17,5 см и частота вращения диска соответственно 33 1/3 и 45 оборотов в минуту) или шеллажные грампластинки (скорость вращения диска 78 оборотов в минуту).

Шеллажные грампластинки

Первыми грампластинками из шеллака появились в 1890-е гг. и просуществовали до 1950-х гг., когда они были вытеснены виниловыми.

Определить причины старения шеллажных дисков довольно трудно, поскольку при их изготовлении использовались различные по качеству виды шеллака и наполнителей.

При соблюдении необходимого режима хранения шеллак медленно теряет упругость и становится хрупким. Повышение влажности ускоряет процесс разрушения шеллака. В результате после каждого проигрывания с поверхности диска снимается тончайший слой шеллака в виде порошка, а следовательно, стареется и информация на звуковой дорожке. Органические материалы, входящие в состав шеллака, чувствительны к пассении, хотя шеллак, как считается, не подвержен воздействию пассении.

Виниловые грампластинки

Винил — материал достаточно прочный и стабильный, но его эксплуатационный цикл не бесконечен. Виниловые диски изготавливаются из поливинилхлорида, который разрушается под воздействием ультрафиолетового излучения или тепла. Его можно стабилизировать в процессе изготовления, добавив в смолу какое-либо химическое вещество. Это не предохраняет от деградации, но замедляет ее.

Обращение при использовании

- Доставайте диск из конверта (вместе с внутренним чехлом), придерживая его одной рукой, и легким нажатием другим приоткройте конверт. Извлеките диск из внутреннего чехла, придерживая чехол за один угол. Старайтесь не нажимать на диск пальцами, так как пыль, попавшая между диском и чехлом, будет впоследствии в порозумье.
- Извлекая диск из внутреннего чехла, отогните край чехла и дайте диску плавно соскользнуть на раскрытою ладонь, так чтобы нижний край пришелся на согнутый большой палец, а средний палец придерживал диск в месте наклейки. Никогда не доставайте диск из чехла рукой.
- Чтобы удержать диск, его край должен опираться на большой палец, а наклейка в центре диска — на остальные пальцы той же руки. Опустите диск на проигрыватель, держите его обеими руками.

Хранение

- Храните грампластинки в мягких полиэтиленовых чехлах. Не пользуйтесь внутренними чехлами из бумаги, картона и поливинилхлорида.
- Не оставляйте грампластинки вблизи источников тепла или света (особенно с ультрафиолетовым излучением), так как и свет, и тепло вредны для синтетических материалов.
- Не кладите тяжелые предметы на грампластинки. Никогда не кладите грампластинки одна на другую.
- Храните грампластинки в вертикальном положении, на ребре.
• Не пользуйтесь стеллажами, в которых опорные стойки оказывают неравномерное давление на диски или расстояние между стойками превышает 10—15 см.
• Не храните диски разного формата вместе, так как диски меньшего размера могут защеряться, тогда как большие диски могут пострадать от неравномерной механической нагрузки.
• Подвергните усадке футляр на долгиграющей пластинке необходимо снять, так как в процессе хранения сжатие будет продолжаться, вызывая коробление диска.

Рекомендуемый режим хранения
Правильный режим хранения очень важен для предупреждения или замедления деградации. Повышение или резкие колебания показателей температуры и относительной влажности влияют на некоторые химические свойства синтетических материалов, из которых делаются грампластинки, что искалечивает качество звучания и вызывает коробление. Рекомендуемые уровни температуры и относительной влажности — 18°С и 40%. Плесень на поверхности диска является причиной точечной коррозии, что влияет на качество воспроизведения.

Пыль и механическая нагрузка иглы на звуковую дорожку приводят к постепенному истиранию стенок бороздки, в результате страдает качество воспроизведения. Кроме того, пыль под давлением иглы постепенно втапливается в термопластические вещества.

Магнитные носители
Магнитные ленты (аудио- и видеозаписи на кассетах, бобинные магнитные ленты со звукозаписями и компьютерными программами, компьютерные диски и др.) обычно изготавливаются путем нанесения магнитного слоя окиси хрома или железа на гибкую пластмассовую (полиэфирную) ленту и закрепления этого слоя связующим веществом. Именно связующее вещество подвергается разрушению под воздействием гидролиза и окисления. Поскольку информация хранится на магнитной ленте в виде записи на отдельных участках магнитного слоя, любая утрата или смещение участков приводит к потере информации.

С начала 1950-х гг. изготавливаются и используются более 40 видов видеоносителей, различающихся по формату, быстродействию, скорости воспроизведения и способу закрепления ленты.

Кассетные ленты гораздо тоньше и менее прочны, чем бобинные, и их эксплуатационный срок непродолжителен. В целях обеспечения сохранности информации в течение длительного времени рекомендуется использовать бобинную ленту.

Эксплуатационный срок магнитной ленты гораздо меньше, чем принято считать. Если "возраст" магнитной ленты превышает 15 лет, она требует особого бережного обращения, но магнитные ленты "старше" 20 лет нуждаются в профессиональной помощи.

Обращение и использование
• Ограничьте использование магнитных лент.
• Избегайте прикасаться к поверхности любой ленты или компьютерной дискути. Жировые вещества с кожи могут попасть на головку проигрывающего устройства и влиять на пыль.
• Без крайней необходимости не прикасайтесь к поверхности или кромке ленты. Если
это все же приходится делать, то надевайте перчатки, не оставляя волокна.
• Не пользоваться рекламируемыми средствами для очистки лент и дисков. Обращайтесь к эксперту, когда необходимо очистить газированную или поврежденную ленту.
• Сразу же после использования ленты или дисков необходимо поместить их в футляр или коробку во избежание попадания пыли.
• Никогда не пользоваться скрепками для бумаги или липкой лентой, чтобы прикрепить какие-либо запись к кассетам, бобинам или дискетам.
• Любая работа с магнитными лентами должна выполняться в чистом помещении.
• Не допускайте, чтобы розыгравшаяся лента или рука касалась пола.
• Неиспользуемые магнитные ленты должны храниться в контейнерах.
• Не роняйте бобины или кассеты и не бросайте их от упаковки.
• Отрезайте поврежденные участки лент или концы ракордов в открытых бобинах.
• Не пытайтесь обычной липкой лентой, чтобы закрепить ракорды или склеить концы ленты при обрыве. В случае необходимости, примените средства, предназначенные для этой цели.
• Все магнитные ленты с записями снабжайте ярлыками.
• Эксплуатируйте оборудование в соответствии с техническими инструкциями, чтобы предотвратить порчу лент.
• Регулярно, как предписывает инструкция, чистите канал воспроизведения препонгиывающего устройства.
• Выходите из фонды ленты с царапинами или другими повреждениями магнитного слоя, причиненные засорением канала воспроизведения.
• После воспроизведения поврежденной ленты препонгирайте чистящую кассету.
• Проследите, чтобы перед повторным использованием ленты сделанная ранее запись была полностью стерт.
• Периодически препонгирайте на большой скорости и перематывайте ленту.
• Если лента не промагирована до конца, никогда не оставляйте ее в этом положении. Всегда полностью перематывайте ленту.
• Предохраняйте работающее оборудование и ленту от пыли.

Дублирование и восстановление
Порча одной компьютерной кассеты может означать потерю большого объема информации. Именно поэтому страховые копии очень важны для обеспечения сохранности магнитных записей. Если создание, ведение и пополнение баз данных входит в функции учреждения, вся информация на системном жестком диске должна ежедневно записываться на отдельные диски или ленты. Согласно плану готовности к стихийным бедствиям, страховые копии должны храниться отдельно, в защищенном помещении.

Аудио-, видео- и компьютерные ленты, предназначенные для длительного хранения, необходимо регулярно копировать и восстанавливать, чтобы обеспечить доступность информации. Каждые три-пять лет следует делать копии всех архивных записей на высококачественной полиэфирной ленте и в соответствии с современными стандартами, установленными для записей и новых носителей. Новая копия должна использоваться только для записи рабочей копии. Копии архивных экземпляров нужно делать через разные промежутки времени, с тем чтобы они не устарели одновременно.

Для изготовления эталонных копий звукозаписей пользуйтесь бобинами магнитными лентами. Письменная расшифровка аудио- или видеозаписи может также служить как рабочая или дублирующая копия. Расшифровка может содержать полный текст записи на эталонной копии либо только общее изложение дискуссии.
Аудиовизуальные средства

Перенос на другие форматы

С развитием технологии появились новые форматы записи информации. Только за последние 20 лет устарели и не используются 8-дорожечные ленты, бета-видеоформаты, 1/2-дюймовые видеокассеты, 3- 5 1/4- и 8-дюймовые компьютерные диски и множество других форматов.

Доступ к информации затрудняется или становится невозможным, если устаревают или выходят из строя машины для считывания этих записей. Чтобы обеспечить надежный доступ к информации, делаются копии записей с помощью новой технологии, пока еще сохранились средства воспроизведения таких записей.

Хранение

- Храните ленты и диски вне магнитного поля, т.е. не помещайте ленты над электрооборудованием.
- Поддерживайте чистоту в помещениях для хранения и не допускайте запыления. Частицы пыли поглощают и удерживают влагу, ускоряя процесс гидролиза, который является наиболее частой и серьезной причиной разрушения магнитных лент. Кроме того, пыль неправильно портит ленту: под воздействием абразивных свойств пыли и давления, возникающего между поверхностью ленты и магнитной головкой, стирается магнитный слой и изнашивается головка.
- Не оставляйте бобины или кассеты под разрушающим действием прямого солнечного света.
- Храните бобинные или кассетные ленты с бобинами или футлярами в вертикальном положении. Бобины должны быть надёжно закреплены на держателе.
- Пользуйтесь высококачественными бобинами или кассетами, футлярами, контейнерами и вспомогательными приспособлениями.
- Пользуйтесь защитными колпаками для открытых бобинных лент.
- Не храните ленты в картонных или виниловых чехлах и в коробках плохого качества: картон может содержать кислоту, а винил — хлор.

Рекомендуемый режим хранения

- Помещение, где хранятся магнитные ленты, должно быть прохладным и сухим: температура 15±3°C и относительная влажность 30—40% создадут безопасный режим хранения. Жара и мороз вредны для магнитных носителей.
- Относительная влажность выше 40% ускоряет разрушение связующего вещества.
- Не допускайте резких колебаний температуры. Если разница между температурой хранения и рабочего помещения составляет более 8°C, необходимо постепенно акклиматизировать магнитный носитель в рабочем помещении в течение четырёх часов (на каждые 19° разницы в температуре).

Оптические носители

Лазерные диски

Лазерные диски появились в 1978 г. и представляют собой диск диаметром 30 см из стекла или пластика. На поверхности диска выбиты миллионы насечек, которые считываются лазерным лучом, направленным на поверхность. Отраженный световой луч преобразуется в обычный аналоговый сигнал.

CD-ROM

CD-ROM (компактный оптический диск с постоянной памятью) произошел от зву-
кового компакт-диска, который использовался в середине 1980-х гг., поэтому их физические размеры и характеристики совпадают. Основная разница между CD-ROM и звуковым компакт-диском состоит в том, что второй содержит только звуковые данные, тогда как первый может содержать звуковые записи, видеофильмы, фотографии и компьютерные программы.

Отформованный пластиковый компакт-диск вмещает непрерывную спираль насечек, содержащих данные. Алюминиевый отражающий слой позволяет лазеру в устройстве записи считывать записанную информацию. Целостность данных обеспечивается защитным слоем лака с одной стороны диска, а с другой — пластиковой основой.

Обращение при использовании

Для оптического диска самую большую опасность представляет сгибание или прикосновение острой предметом к лицевой стороне. В результате таких деформаций обнаруживаются зеркальные искажения, что может привести к неравномерной дефокусировке изображения. При неправильной эксплуатации диска может произойти его повреждение. Если такое происходит, лучи лазера не попадут на нужное место, что приведет к дефектам в работе прибора.

Маркировка

Наличие ярлыков любого типа может привести к смещению данных, а также вызвать бокс при сгорании. Кроме того, в условиях повышенной влажности ярлык может отвалиться. Однако если на диске уже имеется ярлык, его следует удалить. Отклонение ярлыка может создать неравномерное напряжение, которое может привести к дефектам в работе оптических приборов. Если ярлык сам по себе может не привести к повреждению, то при сгорании диска он может привести к неравномерной дефокусировке изображения.

Очистка

Избегайте применения чистящих растворов. Тонкий слой пыли или грязи можно аккуратно стереть мягкой бумажной салфеткой, которой рекомендуется протирать диски, но лучше всего использовать пульверизатор. Протирать нужно только после проветривания, направленных от центра к наружному краю диска по радиусу, а не по окружности.

Хранение

Акриловые футляры—"шкатулки", предлагаемые многими изготовителями, обеспечивают надежную защиту от царапин, пыли, света и резких колебаний температуры. Компакт-диски в футлярах следует помещать в закрытую коробку, ящик или шкаф. Если в комплекте с футляром прилагается карточная распорка или иной прокладочный материал, их следует сохранить.

Рекомендуемый режим хранения

Оптические диски следует хранить в обеспыленном прохладном (при температуре ниже 20°C) и сухом (при относительной влажности 40%) помещении. Более теплый и влажный воздух может вызывать окисление металлического отражающего слоя, деградацию полимерной основы и покрытия. Не оставляйте диски под прямым солнечным светом.
Изменение носителя

Цели 63
Уменьшение износа оригиналов 64
Выбор носителя 64

Копирование 64
Преимущества 64
Недостатки 64
Бумага, тонер и копировальные аппараты 65

Микрофильмирование 65
Процесс микрофильмирования 65
Коммерческие центры микрофильмирования 65
Преимущества 66
Недостатки 66
Типы микрофильмов 67
Хранение и рекомендуемый режим хранения 67

Оцифровка 68
Что такое оцифровка 68
Оптическое распознавание знаков 68
Преимущества 68
Недостатки 68
Моральный износ оборудования 69
Сочетание оцифровки и микрофильмирования 69
Цели

Многие библиотеки в состоянии принять соответствующие меры, чтобы предотвратить износ фондов и замедлить процесс разрушения. Однако лишь немногие учреждения располагают достаточными средствами для проведения трудоемкой и дорогостоящей работы по консервации. Сохранение интеллектуального содержания документа путем переноса его на другой, более прочный и долговечный носитель (переформатирование) — это все, что осуществляют и, возможно, все, что и требуется. Опубликовано много работ, в которых даются подробные ответы на все вопросы, связанные с изменением носителя, и описываются методы и технологии. В данном разделе затрагиваются лишь общие аспекты и рассматриваются, в основном, проблемы сохранения переформатированных документов, в связи с чем снова подчеркивается необходимость бережного обращения с документами, подлежащими переформатированию.

Библиотечные и архивные документы переносятся на другие носители по ряду причин:
• Сохранить интеллектуальное содержание.
• Уменьшить и замедлить износ и старение оригинала.
• Сэкономить площадь: крупные и сильно поврежденные документы можно вывести из фонда, если они не представляют ценности и если важно только интеллектуальное содержание.
• Обеспечить доступность: копии микрофильмов и цифровых носителей могут быть предоставлены другим учреждениям, что делает их доступными большему числу пользователей.
• Получить дублирующие копии отдельных документов в целях безопасности, так как оригиналы могут быть повреждены, украдены или уничтожены.

Переформатирование (если этот метод действительно станет эффективным средством обеспечения сохранности) подразумевает сотрудничество учреждений на национальном и международном уровнях. Такие проекты, как Международный регистр страховых микроформ (European Register of Microform Masters — EROMM), представляющий собой центр библиографических данных о существующих микроформах в крупнейших библиотеках Европы, очень важны. EROMM содержит информацию о том, какие тексты переформатированы и где они хранятся, что позволяет избежать дорогостоящего дублирования: если два учреждения перевели на микрофильмы одну и ту же газету, то это не что иное, как недопустимая траты усилий и средств; то же относится и к ситуации, когда одно учреждение микроформирует подшивку журналов, не ведая, что в соседнем городе этот журнал имеется в хорошем состоянии. Сотрудничество между библиотеками особенно необходимо, когда решается вопрос о том, что следует переформатировать и какая библиотека будет это делать. Подготовлено и опубликовано много руководств в помощь библиотекарям по отбору документов и по разработке программ. Обычно рекомендуется ставить следующие вопросы:
• Является ли документ или собрание редким или уникальным?
• Имеются ли другие экземпляры данного документа в этой библиотеке или в другом учреждении?
• Нуждается ли документ в предварительной обработке (например, в том случае, когда бумага ломкая или избыточно кислотная)?
• Есть ли возможность заменить документ?
• Насколько часто документ используется или будет использоваться?
• Есть ли необходимость сохранить оригинал?
• Был ли данный документ переформатирован ранее?
Уменьшение износа оригиналов

Когда ставит цель предотвратить износ оригиналов, процесс копирования должен быть выполнен с чрезвычайной осторожностью во избежание повреждений. Переформатирование повышает риск механического повреждения оригинала, так как при работе с документом его необходимо неоднократно перемещать и передвигать из рук в руки.

Выбор носителя

Существуют три основных метода перевода на другие носители:

• Копирование.
• Микрофильмирование.
• Оцифровка.

Каждый из методов имеет свои преимущества и недостатки, но все они служат разным целям и в той или иной степени могут использоваться в библиотеках.

Копирование

Копирование как процесс переформатирования не является методом обеспечения сохранности, поскольку мы не получаем мастер-копии, с которой можно изготовить другие копии. Однако он вполне пригоден для восстановления недостающих страниц или частей текста:

• Поврежденные или недостающие выпуски традиционных периодических изданий могут быть скопированы и переделаны для хранения на полках открытого доступа.
• Ксерокопии могут также заменить документы на хрупкой или ломкой бумаге, когда дальнейшее использование может привести к их повреждению и когда требуется именно бумажная копия (а не микрофильм) и нет возможности приобрести издание.

Но в любом случае важно помнить, что копия должна быть высокого качества и сделана на долговечной бумаге.

Преимущества

• Для изготовления копий требуется только копировальный аппарат (ксерокс), а для использования не нужен читальный аппарат.
• Сохраняется носитель и формат оригинала.
• Этот процесс дешевле других, особенно когда оригинал — монохромный документ.
• Пользователи предпочитают бумажные копии микрофильмам; исключение составляют такие документы большого формата, как, например, газеты.

Недостатки

• Качество копий, изготовленных непосредственно со страховой копии, обычно ниже, чем бумажная копия с микрофильма.
• Стоимость последующих копий обычно выше, чем стоимость отпечатков с микрофильма.
• Неизбежна частичная утрата информации, особенно при копировании штриховых изображений.
• Если сохраняется оригинал, то для хранения копии требуется дополнительное место.
Бумага, тонер и копировальные аппараты

- Тонер: следует учитывать качество тонера (рекомендуется черный) и способ соединения тонера с бумагой. Копировальные аппараты должны содержать в надлежащем состоянии, чтобы всегда обеспечивалась температура, достаточная для того, чтобы тонер расплавился и прочное соединение с бумагой. Если только что полученное изображение размывается, это значит, что машина не обеспечивает прочного соединения тонера с бумагой и должна быть отрегулирована.
- Копировальные аппараты: при копировании переплетенных документов на аппаратах плоскостного типа, наиболее распространенных в библиотеках, переплет испытывает сильную механическую нагрузку и неизбежно повреждается. Предпочтительны аппараты, позволяющие копировать раскрытый переплетенный том сверху. В настоящее время появились такие копировальные аппараты и для преобразования текста и изображения в цифровую форму. Их главные преимущества: с их помощью можно получить копии хорошего качества даже в тех случаях, когда книга полностью не раскрывается.

Микрофильмирование

Процесс микрофильмирования

Во многих странах уже разработаны и опубликованы стандарты по всем аспектам производства и хранения микрофильмов. Микрофильмирование в целом сохраняет предшествующий ряд этапов.

Отбор: принятие обоснованных решений относительно того, что необходимо микрофильмировать.

Подготовка: проверка целостности документа; очистка и восстановление поврежденных страниц; подготовка трафаретов с указанием, например, заглавия и краткости уменьшения.

Съемка: процесс, аналогичный процессу фотографирования.

Обработка микрофильма: немедленно после съемки микрофильм должен быть обработан в соответствии со стандартами, установленными для архивных микрофильмов, и пройти тест на остаточное содержание химикатов, использованных при обработке пленки.

Проверка: после обработки необходимо провести покадровую проверку на наличие дефектов, четкость и полноту.

Составление записи: создание и ввод машиночитаемых записей в целях распространения библиографической информации, чтобы обеспечить доступность микрофильма и избежать дублирования.

Коммерческие центры микрофильмирования

Обращение к услугам коммерческого микрофильмирующего агентства может оказаться более экономичным способом, чем создание своей лаборатории. Но очень важно
Изменение носителя

предварительно убедиться в качестве предлагаемых услуг. Рекомендуем сделать следующее:
• Запросите другие учреждения, в частности архивы, которые уже пользовались услугами микрофильмированием агентств.
• Обратитесь к потенциальным партнерам за подтверждением их опыта по микрофильмированию переплетенных, крупных или крупноформатных документов.
• Запросите по меньшей мере три рекомендации от других учреждений.
• Обратитесь в эти учреждения за информацией о том, как выполнялось заказ агентство обращалось с оригиналом, соблюдались ли сроки, как воспринимались требования повторного микрофильмирования дефектных кадров.
• Проверьте, как работает агентство. Уточните, какие используются стандарты и процедуры и как обеспечивается безопасность.
• Заключите контракт между своим учреждением и агентством.
• Предусмотрите изготовление пробного микрофильма.

Преимущества
• Метод имеет многолетнюю историю: библиотечные и архивные документы переводятся на микроформы уже с начала 1930-х гг.
• Проблемы технологического характера в основном решены.
• Разработаны и применяются многочисленные стандарты на процессы микрофильмирования, обработку и хранение.
• Создание, дублирование и распространение документов на микроформах экономически выгодно.
• Микроносители могут быть преобразованы в машинчитаемую форму, если качество микрофильма достаточно высокое.
• Микрофильм — очень компактный носитель.

Недостатки
• Отношение пользователей: обычно аппараты для чтения микрофильмов, устанавливаемые в библиотеках, работают недовольствовательно и неудобны.
• Пользователь должен выполнить несколько ручных операций, чтобы получить доступ к микрофильму:
 установить местонахождение микрофильма;
 загрузить микрофильм в читальный аппарат;
 просмотреть тысячи кадров, для чего приходится многократно перематывать катушку, чтобы найти тот, который ему нужен.
• Если микрофильма нет в данной библиотеке, может понадобиться несколько недель, чтобы получить его.
• При длительном использовании микрофильм покрывается царапинами.
• Каждое поколение или каждая последующая копия утрачивают разрешающую способность (примерно на 10%).
• Качество отпечатков может быть довольно низким.
• Соблюдение всех требований к процессу микрофильмирования трудно контролировать.
• Качество изображения можно определить только после того, как процесс микрофильмирования полностью завершен.
• Дефектные кадры должны быть перенесены и врезаны в страховой негатив.
Типы микрофильмов

На галогенидсеребряной пленке: это единственный тип пленки, пригодный для изготовления страхового негатива, который может храниться бесконечно долго при тщательно контролируемом режиме хранения. Страховые негативы используются только для изготовления копий следующих поколений и никогда не выдаются для просмотра.

На диапозитиве: на этой пленке получают необратимые копии со страхового негатива на диапозитиве, с которого могут быть изготовлены другие копии.

На везукилярной пленке: позитивные копии на везукилярной пленке изготавливают для использования и выдачи.

Хранение и рекомендуемый режим хранения

В основном все рекомендации по хранению кинодокументов (см. с. 54–55) применимы к хранению микрофильмов.

Многие документы в составе современных фондов сняты на ацетатной пленке. Такая пленка подвержена разрушению. При этом выделяются газообразные вещества (с запахом уксуса), а эмульсионный слой скимается, вызывая коробление пленки. В итоге все пленки, основу которых составляет ацетат или триазетат целлюлозы, подвергаются разрушению. Процесс разрушения основы пленки идет медленно, пока не достигает точки автокатализа, после чего скорость разрушения резко возрастает. Температура и влажность определяют тот период времени, в течение которого основа пленки достигает состояния автокатализа (см. таблицу на с. 54).

Считается, и не без оснований, что черно-белая галогенидсеребряная пленка, обработанныя и хранящаяся в соответствии со стандартами и нормативными требованиями, имеет эксплуатационный срок около 500 лет, т.е. сохраняется значительно дольше, чем многие оригиналы пломбового качества. Однако несоблюдение стандартов на обработку и режим хранения уменьшает эксплуатационный срок пленки.

• Страховые копии должны храниться в огнестойких хорошо проветриваемых камерах (но не в сейфах, поскольку в них невозможно поддерживать требуемый уровень относительной влажности), при температуре 18°С и постоянном уровне относительной влажности от 20 до 40% (для галогенидсеребряной пленки на целлюлозе-полиэфирной основе) и от 30 до 40% (для галогенидсеребряной пленки на полиэфирной основе).

• Промежуточные копии на диапозитиве и копии для просмотра на везукилярной пленке могут храниться в условиях, не требующих столь жесткого контроля. Однако прохладное и сухое помещение будет способствовать продлению эксплуатационного срока пленки этих типов.

• Во всех случаях не следует допускать резких колебаний относительной влажности и температуры.

• Изображения на диапозитиве утаскивают, и избыток света ускоряет этот процесс. Следовательно, диапозитивы должны храниться в темноте и, когда не используется, в плотно закрытом контейнере.

• Везукилярная пленка очень чувствительна к пыли и высокой температуре при нагреве читальных аппаратов. Во избежание перегрева аппаратов их нужно содержать в чистоте.

• Контейнеры должны быть сделаны из материалов, не содержащих кислоту, окислители и восстановители, и должны соответствовать требованиям теста на светочувствительность, установленного стандартом Американского национального института стандартов — ANSI standard IT9.2-1991.
Оцифровка

Что такое оцифровка

Оцифровка — это способ получения и хранения изображений средствами компьютерных технологий. С помощью цифровой фотокамеры или устройства, называемого сканером, делается электронная фотография, которая преобразуется в двоичный цифровой код (обычно цепочка нулей и единиц). Цифровые изображения могут быть выведены на дисплей монитора или распечатаны на бумаге. Данные хранятся на магнитных или оптических носителях, в процессе сканирования информационное содержание цифровых изображений не преобразуется в буквенно-цифровую форму, и, таким образом, поиск по тексту документа невозможен.

Оптическое распознавание знаков

Программы оптического распознавания знаков позволяют преобразовывать сканированный документ в текст, который можно редактировать с помощью программы обработки текста. К сожалению, этот процесс не обеспечивает абсолютную точность и требует дополнительного времени на исправление неверно считанных букв. Более того, программы оптического распознавания знаков не сохраняют полиграфическое исполнение и расположение страниц оригинала документа.

Преимущества

- Оцифровка предоставляет быстрый доступ большому числу пользователей во всем мире одновременно.
- Изображения могут быть восстановлены и увеличены с помощью компьютера.
- Пользователи получают копии высокого качества.
- Автоматизированные средства поиска облегчают получение информации.
- Оцифровка позволяет получать изображения, которые могут многократно копироваться без изменения качества изображения.
- Цифровые изображения не изменяются в процессе использования.

Недостатки

- Этот процесс требует применения дорогостоящей технологии для преобразования и поиска записей.
- Цифровое изображение, выведенное на монитор или воспроизведенное на бумаге, не может считаться легальным заменителем оригинала.
- Отсутствуют стандарты и нормативы на многие процессы оцифровки.
- Цифровое хранение еще не признано как альтернатива архивному хранению: требует постоянного контроля, полного или периодического обновления и переноса.
- Накопители на жестких дисках устаревают.
- Стоимость хранения и производственных процессов достаточно высока, но она быстро снижается.
- Затраты времени на получение и хранение архивных изображений высокой разрешающей способности и стоимость этих процессов тем выше, чем выше качество изображения.
- Воспроизведение цветных изображений обходится дорого.
Моральный износ оборудования

Эксплуатационный цикл любого оптического или электронного носителя и сопутствующих программных и аппаратных средств представляет самую серьезную проблему, которая не возникает, когда речь идет о микрофильмировании как методе переформатирования. Компьютерные программы и оборудование быстро заменяются новыми версиями, и это происходит достаточно регулярно. Кроме того, технологии приходят и уходят. Возможно, в будущем библиотеки уже не смогут использовать многие технологии сегодняшнего дня. Перестают производиться детали для оборудования, а старые программы будут непригодны для работы на новых машинах. Иными словами, это значит, что уже через 25 лет могут возникнуть трудности с поиском информации на оптических носителях, а через 100 лет это безусловно станет серьезной проблемой.

Чтобы преодолеть последствия морального износа оборудования, потребуется перевод архивов копий архивных и электронных документов на новые носители, по мере того как технологии, пришедшие на смену устаревшим, будут использоваться как стандартные.

Сочетание оцифровки и микрофильмирования

Вполне вероятно, что одновременное создание страховых микрофильмов в целях сохранности и страховых цифровых копий для доступа и использования получит признание уже в следующем десятилетии как оптимальная стратегия обеспечения сохранности. Общая тенденция в настоящее время — отдавать предпочтение микрофильмированию. Однако быстрое развитие компьютерных технологий, появление сложного оборудования, позволяющего получать микрофильмы и цифровые изображения высокой разрешающей способности одновременно и при низких затратах, а также настоятельная необходимость обеспечить беспрепятственный доступ к информации — все это в итоге приведет к тому, что будет доминировать цифровая технология. И все же использование оцифровки в целях сохранности остается под вопросом до тех пор, пока не будут разработаны и не станут применяться единые стандарты.
Приложение I. Куда обратиться за консультацией

Abbey Publications Inc.
Адрес: 7105 Geneva Drive, Austin TX 78723, USA
Тел.: 1(512) 929 3992; факс: 1(512) 929 3995
e-mail: Abbeypub@flashnet
Издания: Abbey newsletter и Alkaline paper advocate.

American Institute for Conservation of Historic and Artistic Works (AIC) —
Американский институт по консервации исторических
и художественных произведений
Адрес: 1717 K Street NW, Suite 301, Washington DC 20006,
USA
Тел.: 1(202) 452 9545; факс: 1(202) 452 9328
e-mail: InfoAc@aol.com
Издания: AIC news и AIC journal.

Bibliothèque nationale de France (BnF),
Service de conservation —
Национальная библиотека Франции,
Служба консервации
Адрес: Quai François Mauriac, 75706 Paris cedex 13,
FRANCE
Тел.: 33(0) 1 5379 4165; факс: 33(0) 1 5379 4161

The British Library, National Preservation Office (NPO)—
Британская библиотека, Национальный центр консервации
Адрес: Great Russell Street, London WC1B 3DG, UK
Тел.: 44(0) 171 412 7612; факс: 44(0) 171 412 7796
e-mail: npo@bl.uk

Canadian Conservation Institute (CCI)—
Канадский институт по проблемам консервации
Адрес: 1030 Innes Road, Ottawa, Ontario K1A 0N5, CANADA
Тел.: 1(613) 998 3721; факс: 1(613) 998 4721
e-mail: cci-iccppublications@pch.gc.ca
Издания: Bulletin de l’ICC (на англ. и фр. яз.).
Выходит 2 раза в год, распространяется бесплатно.

Canadian Council of Archives (CCA)—
Канадский совет архивов
Адрес: 1009-344 Wellington Street, Ottawa, Ontario K1A 0N3, CANADA
Тел.: 1(613) 995 0210; факс: 1(613) 947 6662
e-mail: dubeau@fis.utoronto.ca

Council on Library and Information Resources (CLIR)—
Совет по библиотечным и информационным ресурсам
Адрес: 1755 Massachusetts Av., NW, Suite 500
Washington, DC 20036, USA
Тел.: 1(202) 939 4750; факс: 1(202) 939 4765
e-mail: info@clir.org

European Commission on Preservation and Access (ECOPA)—
Европейская комиссия по сохранности и доступности
Адрес: PO Box 19121, NL-1000 GC, Amsterdam,
THE NETHERLANDS
Тел.: 31(20) 551 0807; факс: 31(20) 620 4941
e-mail: yola.de.lusenet@bureau.knaw.nl

European Register of Microform Masters (EROMM)—
Европейский регистр микроформ
Тел.: 49(551) 39 3468; факс: 49(551) 39 9525
e-mail: eromm@mail.sub.uni.goettingen.de

Fédération internationale des archives du film (FIAF)—
Международная федерация киноконсерваторий
Адрес: 1 rue Detschoz, B-1000 Bruxelles, BELGIUM
Тел.: 32(2) 538 3065; факс: 32(2) 534 4774
e-mail: fiaf@mail.interpac.be

Fédération internationale des archives de télévision (FIAT)—
Международная федерация архивов телевидения
Адрес: Elmfield Mansions, Elmfield Road, Balham, London,
SW17 8AA, UK
Тел. и факс: 44(0) 181 675 5941
e-mail: gosta@msn.com

Fundación nacional de arte (FUNARTE)—
Национальный фонд искусств
Адрес: Rua Sao Jose 12° andar - Centro, CEP 20010-020,
Rio de Janeiro, BRAZIL
Тел.: 55(21) 533 8090; факс: 55(21) 262 4516
e-mail: zuniga@omega.eincc.bc

Getty Conservation Institute—
Институт консервации Фонда Гетти
Адрес: 1200 Getty Center Drive, Suite 700, Los Angeles, CA
90049-1684, USA
Тел.: 1(310) 440 7325; факс: 1(310) 440 7702
Издания: Newsletter (на англ. и исп. яз.).
Выходит 3 раза в год, распространяется бесплатно.
Институт проблем сохранности изображений
Адрес: Rochester Institute of Technology, Frank E. Gannett Memorial Bldg, PO Box 9887, Rochester,
NY 14623-0887, USA
Тел.: (176) 475 2736; факс: (176) 475 7230

Institute of Paper Conservation (IPC) —
Институт консервации бумаги
Адрес: Leigh Lodge, Leigh, Worcester WR6 5LB, UK
Тел.: 44(1866) 832323; факс: 44(1866) 833688
e-mail: clare@ipc.org.uk
Издания: Paper conservation news и The paper conservator.

International Association of Sound Archives (IASA) —
Международная ассоциация архивов звукозаписей
Адрес: 46(8) 783 3700; факс: 46(8) 663 1811

International Centre for the Conservation and Restoration of Cultural Property (ICCROM) —
Международный центр по консервации и реставрации культурной собственности
Адрес: 13, via di San Michele, I-00153 Roma, ITALY
Тел.: 39(6) 585 5311; факс: 39(6) 5855 3349
e-mail: iccrom@icccrom.org

International Council on Archives (ICA) —
Международный совет архивов (МКА)
Адрес: 60, rue des Francs-Bourgeois, F-75003 Paris, FRANCE
Тел.: 33(1) 4027 6306; факс: 33(1) 4272 2065
e-mail: icca@icca.com

International Federation of Library Associations and Institutions (IFLA) —
Международная федерация библиотечных ассоциаций и учреждений (ИФЛА)
Адрес: PO Box 95312, 2509 CH The Hague,
THE NETHERLANDS
Тел.: 31(70) 3140 884; факс: 31(70) 3854 827
e-mail: ifla@ifla.nl

IFLA Section on Preservation and Conservation —
Секция ИFLA по сохранности и консервации
Адрес: National Library of Canada, 395 Wellington Street,
Ottawa, Ontario K1A ON4, CANADA
Тел.: 1(613) 945 8570; факс: 1(613) 947 2916
e-mail: ralph.manning@nlc-bnc.ca

International Institute for Conservation (IIC) —
Международный институт проблем консервации
Адрес: 6 Buckingham Street, London WC2N 6BA, UK
Тел.: 44(171) 839 5975; факс: 44(171) 979 1564
e-mail: 100731.1566@compuserve.com
Издания: IIC bulletin. Выходит 6 раз в год.

Joint IFLA-ICA Committee for Preservation in Africa (JICPA) —
Объединённый комитет ИFLA-ICA по вопросам сохранности для Африки
Адрес: Kenia National Archives and Documentation Service, Moi Avenue,
PO Box 49210, Nairobi, KENYA
Тел.: 254(2) 22 89 59; факс: 254(2) 22 80 20

Library of Congress,
Preservation Directorate —
Библиотека Конгресса,
Управление по сохранности
Адрес: LM-G21, Washington, DC 20540, USA
Тел.: 1(202) 707 5213; факс: 1(202) 707 3434

National Library of Australia, National Preservation Office —
Национальная библиотека Австралии,
Национальный центр консервации
Адрес: NIAC, Canberra Act 2600, AUSTRALIA
Тел.: 61(6) 262 1571; факс: 61(6) 273 4535
e-mail: claw@nla.gov.au

Northeast Document Conservation Center (NEDCC) —
Североамериканский центр сохранности документов
Адрес: 100 Brickstone Square, Andover,
MA 01810, USA
Тел.: 1(978) 470 1010; факс: 1(978) 475 6021
e-mail: nedcc@nedcc.org

Research Libraries Group (RLG) —
Группа научных библиотек
Адрес: 1200 Villa Street, Mountain View,
CA 94041-1106, USA
Тел.: 1(800) 537 7546 (Северная Америка),
1(650) 691 2252 (за пределами Северной Америки);
факс: 1(650) 964 0943
e-mail: bl.irc@rlg.org

Solinet Preservation Service —
Служба сохранности
Библиотечной сети SOLINET
Адрес: 1438 West Peachtree Street, NW, Suite 200,
Atlanta GA 30309-2955, USA
Тел.: 1(404) 892 0943 или 1(800) 999 8558
e-mail: helpdesk@solinet.net

UNESCO — Memory of the World —
ЮНЕСКО — Программа "Память мира"
Адрес: 1, rue Miollis, 75015 Paris, FRANCE
Тел.: 33(0) 145 68 4496; факс: 33(0) 144 49 0058
Приложение II. Стандарты

Международные и национальные стандарты действуют как утвержденные нормативные документы, устанавливающие технические спецификации или точные критерии, которые следует применять в качестве правил, руководства или определений признаков и свойств, с тем чтобы обеспечить соответствие материалов, продуктов, процессов и услуг их назначению и предъявляемым к ним требованиям. Обычно стандарты рекомендуются для обязательного применения, но при этом не исключается возможность, в силу необходимости, их адаптации к местным условиям.

Чтобы гарантировать правильность наших действий в области сохранности, нам необходимо знать, что наши методы, процедуры и приборы соответствуют установленным стандартам. И если соблюдение некоторых стандартов, например на системы электроснабжения, обязательны, то в других случаях возможны отступления и даже нарушения. Это означает, что те, кто выполняет определенный вид деятельности, или потребители определенных продуктов должны знать все стандарты и настаивать на их соблюдении.

Международная организация по стандартизации (ИСО) разрабатывает международные стандарты посредством технических комитетов, которые специализируются по определенным материалам, методам, процессам, системам, терминологии и технологиям.

International Organization for Standardization (ISO)
1, rue de Varembe, CP 56, CH-1211, Genève 20, Switzerland
Tel.: 41(22) 749 0111; факс: 41(22) 733 3430

Ниже приводятся некоторые стандарты, имеющие отношение к проблемам сохранности и разработанные соответствующими техническими комитетами ИСО:

ISO JCT 1: Information technology (Информационная технология)
ISO TC 6: Paper, board and pulps (Бумага, картон, бумажная масса)
ISO TC 21: Equipment for fire protection and fire fighting (Оборудование для предупреждения и тушения пожара)
ISO TC 35: Paints and varnishes (Краски и лаки)
ISO TC 37: Terminology (Principles and coordination) (Терминология — Принципы и координация)
ISO TC 42: Photography (Фотография)
ISO TC 46: Information and documentation (Информация и документация)
ISO TC 47: Chemistry (Химия)
ISO TC 61: Plastics (Пластмассы)
ISO TC 92: Fire safety (Пожарная безопасность)
ISO TC 94: Personal safety — Protective clothing and equipment (Индивидуальная безопасность — Защитная одежда и оборудование)
ISO TC 120: Leather (Кожа)
ISO TC 122: Packaging (Упаковка)
ISO TC 146: Air quality (Качество воздуха)
ISO TC 171: Document imaging applications (Применение документальных изображений)

Стандарт на долговечную бумагу

Долговечная бумага не содержит никаких веществ, которые являются причиной ее саморазрушения. Эксплуатационный цикл долговечной бумаги составляет несколько сот лет, что подтверждается тестом ускоренного старения. Свойства и характеристики долговечной бумаги описаны в стандарте ИСО: ISO 9768:1994 — Information and documentation — Paper for documents — Requirements for permanence (Информация и документация — Бумага для документов — Требования к долговечности):

- pH между 7,5 и 10;
- щелочной резерв (эквивалент карбоната кальция): 2%;
- число капель (устойчивость к окислению): ниже 5;
- сопротивление разрыву: 350 мН для всех видов бумаг с поверхностной плотностью более 70г/м².

Этот символ должен быть проставлен на всех публикациях, напечатанных на долговечной бумаге:

72
Программа "Сохранность и консервация"

Главная цель Основной программы ИФЛА "Сохранность и консервация" (ИФЛА-ПАК) — обеспечить возможно более длительную сохранность библиотечных и архивных документов, опубликованных и неопубликованных, на любых носителях в пригодном для использования состоянии. В 1986 г. стали создаваться сети региональных центров программы для решения этой проблемы во всем мире. Информационный бюллетень программы International preservation news выходит 3 раза в год на английском, испанском и французском языках и распространяется бесплатно. Дополнительную информацию вы можете получить в своем региональном центре.

Международный центр и Региональный центр для Западной Европы, Ближнего Востока и Африки —
International Centre and Regional Centre for Western Europe, the Middle East and Africa
Адрес: Bibliotheque nationale de France, 2, rue Vivienne, 75084 Paris cedex 02, FRANCE
Тел.: 33(1) 4703 8726; факс: 33(1) 4703 7725
e-mail: marie-therese.varlamoff@bnf.fr

Региональный центр для Северной Америки —
Regional Centre for North America
Адрес: Library of Congress, Preservation Directorate LM-G21, Washington, DC 20540, USA
Тел.: 1(202) 707 5213; факс: 1(202) 707 3434
e-mail: ator@loc.gov

Региональный центр для Латинской Америки и Карийского бассейна —
Regional Centre for Latin America and the Caribbean
Адрес: Biblioteca nacional de Venezuela, Centro de conservacion documental
Edificio Rogi, Piso 1, Calle Soledad, Zona Industrial la Trinidad, Caracas 20, VENEZUELA
Тел.: 58(2) 941 4070; факс: 58(2) 941 4070

Региональный центр для Центральной и Восточной Азии —
Regional Centre for Central and East Asia
Адрес: National Diet Library, Preservation Planning Office, 10-1 Nagatacho, 1 Chome Chiyoda-ku, Tokyo 100 JAPAN
Тел.: 81(3) 3581 2331; факс: 81(3) 3592 0783

Региональный центр для Юго-Восточной Азии и Океании —
Regional Centre for South-East Asia and the Pacific
Адрес: National Library of Australia, National Initiatives and Collaboration, Canberra ACT 2600, AUSTRALIA
Тел.: 61(6) 2621 571; факс: 61(6) 2734 535
e-mail: claw@nla.gov.au

Региональный центр для стран Восточной Европы и СНГ
Адрес: Всероссийская государственная библиотека иностранной литературы им. М.И. Рудомино (ВГБИЛ), Николаевская ул., 1, Москва, 109189, РОССИЯ
Тел.: 7(095) 915 5532; факс: 7(095) 915 3637
e-mail: gkislov@libfl.ru