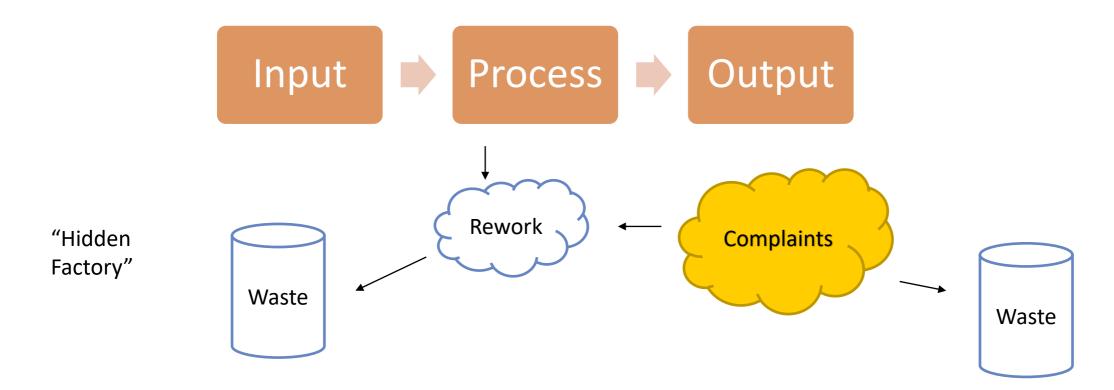


Continous improvement in research libraries, by using Lean Six Sigma

IFLA Satellite meeting: Demystifying Statistics and Evaluation in Libraries: The What, How, Why, and When of Statistics and Evaluation in Libraries

Matthijs van Otegem – <u>m.vanotegem@uu.nl</u> August 16th, 2023


In this presentation:

- 1. Why using statistics for continuous improvement?
- 2. Five steps DMAIC
 - 1. Design
 - 2. Measure
 - 3. Analyze
 - 4. Improve
 - 5. Control
- 3. Some final remarks about outcome and context

Why using statistics for continuous improvement?

Business Process Improvement

- Start and ends with the customer
- Process oriented
- Data driven


Why using statistics for continuous improvement?

What you would like to achieve:

- Improve customer satisfaction
- Reduce costs
- Knowledge development

Low quality has impact on:

- Efficiency
- Direct costs
- Cash flow
- Investments

Why using statistics for continuous improvement?

Lean Six Sigma does not come out of the blue:

Pre 1900: craftmanship

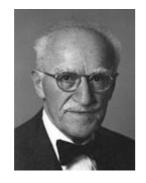
1920: Taylor & Ford: standardization of work

1930: Walter Shewart: statistical process control (Bell)

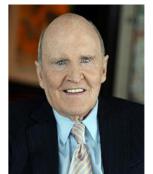
1950 Joseph Juran: Managing of Quality (Pareto principle)

1955 Peter Drucker: Knowledge worker

1970 Philip Crosby: Zero defects 1970 Deming: Plan-do-check-act


1980 Taiichi Ohno: Toyota production system (Lean)

1995 Jack Welch: Six Sigma



DMAIC - cycle

Define

What is the project?
Who is your customer?
What is your process?

Control

Determine new process capability Implement process controls

Measure

Define and validate your measurement system

Measure your actual process performance

Improve

Define optimal settings

Define tolerance limits

Analyze

Identify causes of defects What is the root cause?

Define

What is the project?
Who is your customer?
What is your process?

What is critical to quality?

> Establish measurement definitions

Scoping		
External CTQ		
Internal CTQ		
Unit		
Upper specification		
limit		
Lower boundary		
Defect		
Opportunity		
Population		
Constraints		

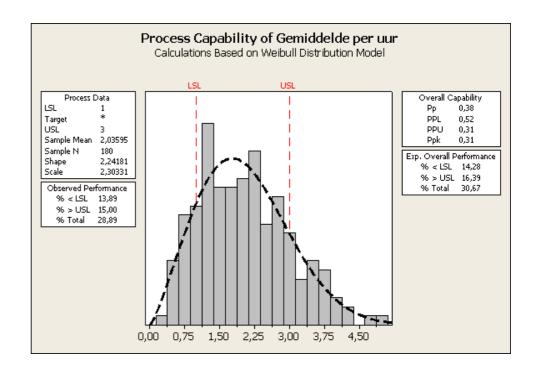
Define

What is the process?

➤ Make a SIPOC

Feed the dog

Outputs Suppliers Process Customers Inputs Grocery Dog Go shopping Dog eats Open Store Buy dogfood Dog fertilizes Family cupboard Garden Return home garden Get bowl Put groceries Fill bowl away in Call dog cupboard



Measure

- 1. Define measurement system
- 2. Validate your measurement system
- 3. Actual process Performance
- 4. Define statistical success

What is your goal:

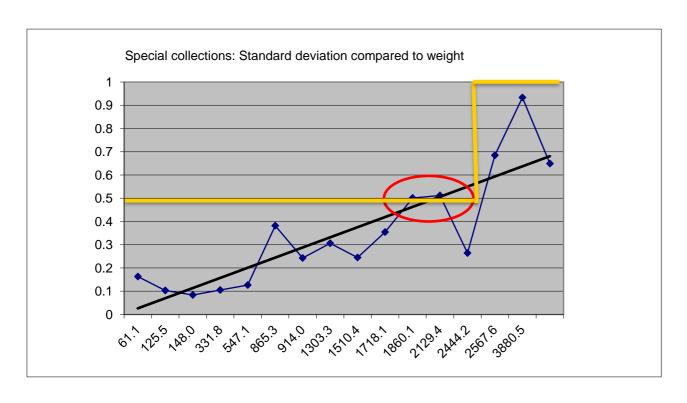
- ➤ Changing the mean?
- > Reduce variance?

Big Five:

Descriptive statistics (graphs)

Distribution identification (probability plot)

Control chart


Run Chart

Process capability analysis

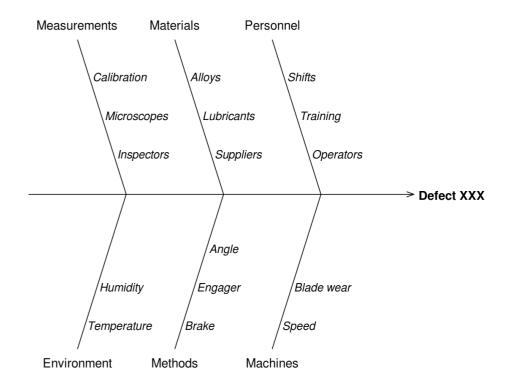
Measure: validation of your measurement system

- Linearity & bias study
- Kappa test (discrete values)

Appraiser	# Inspected	# Matched	Percent	95%
CI Margot	12	2	16,67	(2,09;
48,41) Marlies	12	8	66,67	(34,89;
90,08) Donita	12	3	25,00	(5,49;
57,19) Mattie	12	7	58,33	(27,67;
84,83)				

Matched: Appraiser's assessment across trials agrees with the known standard.

Response	Kappa
a	0,031901
С	-0,100512
g	0,310119
Overall	0,091443


Analyze

- Identify causes of defects
- Determine vital causes

Types of variables:

- 1. Controllable
- 1. Noise
- 1. Disruptions

Factors contributing to defect XXX

This is the fun part! Now we are going to solve the issue!

Quantitative	Qualitative
Modelling	Brainstorm
Design of experiments	Reverse brainstorm
Regression	Green field
	Analogy

- Define optimal settings
- Define tolerance limits

Basically, control is a repeat:

- Validate your measurement system
- Process capability analysis of the new situation
- Methods for process control
 - New dashboard
 - Out of control plan

